Interprocedurally Analyzing Polynomial Identities

  • Markus Müller-Olm
  • Michael Petter
  • Helmut Seidl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3884)


Since programming languages are Turing complete, it is impossible to decide for all programs whether a given non-trivial semantic property is valid or not. The way-out chosen by abstract interpretation is to provide approximate methods which may fail to certify a program property on some programs. Precision of the analysis can be measured by providing classes of programs for which the analysis is complete, i.e., decides the property in question. Here, we consider analyses of polynomial identities between integer variables such as x 1 . x 2− 2x3 = 0. We describe current approaches and clarify their completeness properties. We also present an extension of our approach based on weakest precondition computations to programs with procedures and equality guards.


Constraint System Polynomial Identity Procedure Call Program Point Transition Invariant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Becker, T., Weispfenning, V.: Gröbner Bases. Springer, Heidelberg (1993)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bensalem, S., Lakhnech, Y., Saidi, H.: Powerful Techniques for the Automatic Generation of Invariants. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Bjørner, N., Browne, A., Manna, Z.: Automatic Generation of Invariants and Intermediate Assertions. Theoretical Computer Science 173(1), 49–87 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Colón, M.A.: Approximating the Algebraic Relational Semantics of Imperative Programs. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 296–311. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Cousot, P.: Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Relaxation and Semidefinite Programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Cousot, P., Cousot, R.: Static Determination of Dynamic Properties of Recursive Procedures. In: Neuhold, E. (ed.) IFIP Conf. on Formal Description of Programming Concepts, pp. 237–277. North-Holland, Amsterdam (1977)Google Scholar
  7. 7.
    Gulwani, S., Necula, G.: Discovering Affine Equalities Using Random Interpretation. In: 30th ACM Symp. on Principles of Programming Languages (POPL), pp. 74–84 (2003)Google Scholar
  8. 8.
    Gulwani, S., Necula, G.: Precise Interprocedural Analysis Using Random Interpretation. In: 32th Ann. ACM Symp. on Principles of Programming Languages (POPL), pp. 324–337 (2005)Google Scholar
  9. 9.
    Hecht, M.S.: Flow Analysis of Computer Programs. Elsevier North-Holland (1977)Google Scholar
  10. 10.
    Kam, J., Ullman, J.: Global Data Flow Analysis and Iterative Algorithms. Journal of the ACM (JACM) 23(1), 158–171 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Karr, M.: Affine Relationships Among Variables of a Program. Acta Informatica 6, 133–151 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Müller-Olm, M., Seidl, H.: Polynomial Constants are Decidable. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 4–19. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Müller-Olm, M., Seidl, H.: A Note on Karr’s Algorithm. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1016–1028. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Müller-Olm, M., Seidl, H.: Computing Polynomial Program Invariants. Information Processing Letters (IPL) 91(5), 233–244 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Müller-Olm, M., Seidl, H.: Precise Interprocedural Analysis through Linear Algebra. In: 31st ACM Symp. on Principles of Programming Languages (POPL), pp. 330–341 (2004)Google Scholar
  16. 16.
    Müller-Olm, M., Seidl, H.: A Generic Framework for Interprocedural Analysis of Numerical Properties. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 235–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Müller-Olm, M., Seidl, H.: Analysis of Modular Arithmetic. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 46–60. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Petter, M.: Berechnung von polynomiellen Invarianten, Diploma Thesis (2004)Google Scholar
  19. 19.
    Reif, J.R., Lewis, H.R.: Symbolic Evaluation and the Global Value Graph. In: 4th ACM Symp. on Principles of Programming Languages POPL 1977, pp. 104–118 (1977)Google Scholar
  20. 20.
    Rodriguez-Carbonell, E., Kapur, D.: An Abstract Interpretation Approach for Automatic Generation of Polynomial Invariants. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 280–295. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Rodriguez-Carbonell, E., Kapur, D.: Automatic Generation of Polynomial Loop Invariants: Algebraic Foundations. In: Int. ACM Symposium on Symbolic and Algebraic Computation 2004 (ISSAC 2004), pp. 266–273 (2004)Google Scholar
  22. 22.
    Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear Loop Invariant Generation using Gröbner Bases. In: ACM Symp. on Principles of Programming Languages (POPL), pp. 318–329 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Markus Müller-Olm
    • 1
  • Michael Petter
    • 2
  • Helmut Seidl
    • 2
  1. 1.Institut für InformatikWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Institut für Informatik, I2TU MünchenMünchenGermany

Personalised recommendations