Symmetry in Network Congestion Games: Pure Equilibria and Anarchy Cost

  • Dimitris Fotakis
  • Spyros Kontogiannis
  • Paul Spirakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3879)


We study computational and coordination efficiency issues of Nash equilibria in symmetric network congestion games. We first propose a simple and natural greedy method that computes a pure Nash equilibrium with respect to traffic congestion in a network. In this algorithm each user plays only once and allocates her traffic to a path selected via a shortest path computation. We then show that this algorithm works for series-parallel networks when users are identical or when users are of varying demands but have the same best response strategy for any initial network traffic. We also give constructions where the algorithm fails if either the above condition is violated (even for series-parallel networks) or the network is not series-parallel (even for identical users). Thus, we essentially indicate the limits of the applicability of this greedy approach.

We also study the price of anarchy for the objective of maximum latency. We prove that for any network of m uniformly related links and for identical users, the price of anarchy is \({\it \Theta}({\frac{{\rm log} m}{{\rm log log} m}}\)).


Nash Equilibrium Pure Strategy Maximum Latency Identical User Congestion Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Awerbuch, B., Azar, Y., Epstein, A.: The Price of Routing Unsplittable Flow. In: STOC  2005, pp. 57–66 (2005)Google Scholar
  2. 2.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 2nd edn. John Wiley and Sons, Inc., Chichester (1993)zbMATHGoogle Scholar
  3. 3.
    Christodoulou, G., Koutsoupias, E.: The Price of Anarchy of Finite Congestion Games. In: STOC 2005, pp. 67–73 (2005)Google Scholar
  4. 4.
    Correa, J.R., Schulz, A.S., Stier Moses, N.E.: Computational Complexity, Fairness, and the Price of Anarchy of the Maximum Latency Problem. In: Bienstock, D., Nemhauser, G.L. (eds.) IPCO 2004. LNCS, vol. 3064, pp. 59–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Czumaj, A., Vöcking, B.: Tight Bounds for Worst-case Equilibria. In: SODA 2002, pp. 413–420 (2002)Google Scholar
  6. 6.
    Dorn, W.S.: Duality in Quadratic Programming. Quarterly of Applied Mathematics 18(2), 155–162 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Duffin, R.J.: Topology of Series-Parallel Networks. J. of Mathematical Analysis and Applications 10, 303–318 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: The Complexity of Pure Nash Equilibria. In: STOC 2004, pp. 604–612 (2004)Google Scholar
  9. 9.
    Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The Structure and Complexity of Nash Equilibria for a Selfish Routing Game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish Unsplittable Flows. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 593–605. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: Computing Nash Equilibria for Scheduling on Restricted Parallel Links. In: STOC 2004, pp. 613–622 (2004)Google Scholar
  12. 12.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: Nash Equilibria in Discrete Routing Games with Convex Latency Functions. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 645–657. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Graham, R.L.: Bounds on Multiprocessing Timing Anomalies. SIAM Journal of Applied Mathematics 17(2), 416–429 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hoeffding, W.: Probability Inequalities for Sums of Bounded Random Variables. J. of the American Statistical Association 58(301), 13–30 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate Equilibria and Ball Fusion. Theory of Computing Systems 36, 683–693 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Koutsoupias, E., Papadimitriou, C.: Worst-case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Libman, L., Orda, A.: Atomic Resource Sharing in Noncooperative Networks. Telecommunication Systems 17(4), 385–409 (2001)CrossRefzbMATHGoogle Scholar
  18. 18.
    Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: A New Model for Selfish Routing. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 547–558. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Mavronicolas, M., Spirakis, P.: The Price of Selfish Routing. In: STOC 2001, pp. 510–519 (2001)Google Scholar
  20. 20.
    Rosenthal, R.W.: A Class of Games Possessing Pure-Strategy Nash Equilibria. International Journal of Game Theory 2, 65–67 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Roughgarden, T.: The Price of Anarchy is Independent of the Network Topology. In: STOC 2002, pp. 428–437 (2002)Google Scholar
  22. 22.
    Roughgarden, T.: The Maximum Latency of Selfish Routing. In: SODA 2004, pp. 980–981 (2004)Google Scholar
  23. 23.
    Roughgarden, T., Tardos, É.: How Bad is Selfish Routing? J. of the ACM 49(2), 236–259 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dimitris Fotakis
    • 1
  • Spyros Kontogiannis
    • 2
    • 3
  • Paul Spirakis
    • 2
  1. 1.Dept. of Information and Communication Systems EngineeringUniversity of the AegeanSamosGreece
  2. 2.Research Academic Computer Technology InstitutePatrasGreece
  3. 3.Dept. of Computer ScienceUniversity of IoanninaIoanninaGreece

Personalised recommendations