Attribute Implications in a Fuzzy Setting

  • Radim Bělohlávek
  • Vilém Vychodil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3874)

Abstract

The paper is an overview of recent developments concerning attribute implications in a fuzzy setting. Attribute implications are formulas of the form A \(\Longrightarrow\) B, where A and B are collections of attributes, which describe dependencies between attributes. Attribute implications are studied in several areas of computer science and mathematics. We focus on two of them, namely, formal concept analysis and databases.

Keywords

attribute implication fuzzy logic functional dependency concept lattice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboui, S., et al.: The Lowell database research self-assessment. Communications of ACM 48(5), 111–118 (2005)CrossRefGoogle Scholar
  2. 2.
    Armstrong, W.W.: Dependency structures in data base relationships. In: IFIP Congress, Geneva, Switzerland, pp. 580–583 (1974)Google Scholar
  3. 3.
    Bělohlávek, R.: Similarity relations in concept lattices. J. Logic Comput. 10(6), 823–845 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bělohlávek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer, Academic/Plenum Publishers, New York (2002)MATHGoogle Scholar
  5. 5.
    Bělohlávek, R.: Concept lattices and order in fuzzy logic. Ann. Pure Appl. Logic 128, 277–298 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bělohlávek, R.: Algorithms for fuzzy concept lattices. In: Proc. Fourth Int. Conf. on Recent Advances in Soft Computing, Nottingham, United Kingdom, December 12-13, pp. 200–205 (2002)Google Scholar
  7. 7.
    Bělohlávek, R., Chlupová, M., Vychodil, V.: Implications from data with fuzzy attributes. In: AISTA 2004 in Cooperation with the IEEE Computer Society Proceedings, 5 p. (2004) ISBN 2–9599776–8–8Google Scholar
  8. 8.
    Bělohlávek, R., Funioková, T., Vychodil, V.: Fuzzy closure operators with truth stressers. Logic Journal of IGPL (to appear)Google Scholar
  9. 9.
    Bělohlávek, R., Vychodil, V.: Implications from data with fuzzy attributes vs. scaled binary attributes. In: FUZZ-IEEE 2005, The IEEE International Conference on Fuzzy Systems, Reno (Nevada, USA), May 22-25, pp. 1050–1055 (2005); (proceedings on CD), abstract in printed proceedings, p. 53, ISBN 0–7803–9158–6Google Scholar
  10. 10.
    Bělohlávek, R., Vychodil, V.: Reducing the size of fuzzy concept lattices by hedges. In: FUZZ-IEEE 2005, The IEEE International Conference on Fuzzy Systems, Reno (Nevada, USA), May 22-25, pp. 663–668 (2005) (proceedings on CD), abstract in printed proceedings, p. 44, ISBN 0–7803–9158–6 Google Scholar
  11. 11.
    Bělohlávek, R., Vychodil, V.: Fuzzy attribute logic: attribute implications, their validity, entailment, and non-redundant basis. In: Liu, Y., Chen, G., Ying, M. (eds.) Fuzzy Logic, Soft Computing & Computational Intelligence: Eleventh International Fuzzy Systems Association World Congress, vol. I, pp. 622–627. Tsinghua University Press and Springer (2005) ISBN 7–302–11377–7Google Scholar
  12. 12.
    Bělohlávek, R., Vychodil, V.: Fuzzy attribute logic: syntactic entailment and completeness. In: JCIS 2005, 8th Joint Conference on Information Sciences, Salt Lake City, Utah, USA, July 21-26, pp. 78–81 (2005)Google Scholar
  13. 13.
    Bělohlávek, R., Vychodil, V.: Reducing attribute implications from data tables with fuzzy attributes to tables with binary attributes. In: JCIS 2005, 8th Joint Conference on Information Sciences, Salt Lake City, Utah, USA, July 21-26, pp. 82–85 (2005)Google Scholar
  14. 14.
    Bělohlávek, R., Vychodil, V.: What is a fuzzy concept lattice? In: Proc. CLA 2005, Olomouc, Czech Republic, September 7-9, pp. 34–45 (2005)Google Scholar
  15. 15.
    Bělohlávek, R., Vychodil, V.: Fuzzy attribute implications: computing non-redundant bases using maximal independent sets. In: Zhang, S., Jarvis, R.A. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 1126–1129. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Bělohlávek, R., Vychodil, V.: Axiomatizations of fuzzy attribute logic. In: IICAI 2005, Pune, India (to appear)Google Scholar
  17. 17.
    Bělohlávek, R., Vychodil, V.: Functional dependencies of data tables over domains with similarity relations. In: IICAI 2005, Pune, India (2005) (to appear)Google Scholar
  18. 18.
    Buckles, B.P., Petry, F.E.: Fuzzy databases in the new era. In: Proceedings of the 1995 ACM symposium on Applied computing, Nashville, Tennessee, pp. 497–502 (1995) ISBN 0-89791-658-1Google Scholar
  19. 19.
    Cubero, J.C., Vila, M.A.: A new definition of fuzzy functional dependency in fuzzy relational datatabses. Int. J. Intelligent Systems 9(5), 441–448 (1994)CrossRefGoogle Scholar
  20. 20.
    Ganter, B.: Begriffe und Implikationen (1998) (manuscript)Google Scholar
  21. 21.
    Ganter, B.: Algorithmen zur formalen Begriffsanalyse. In: Ganter, B., Wille, R., Wolff, K.E. (Hrsg.) Beiträge zur Begriffsanalyse, pp. 241–254. B. I. Wissenschaftsverlag, Mannheim (1987)Google Scholar
  22. 22.
    Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin (1999)MATHGoogle Scholar
  23. 23.
    Gerla, G.: Fuzzy Logic. Mathematical Tools for Approximate Reasoning. Kluwer, Dordrecht (2001)MATHGoogle Scholar
  24. 24.
    Goguen, J.A.: The logic of inexact concepts. Synthese 18, 325–373 (1968)Google Scholar
  25. 25.
    Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives resultant d’un tableau de données binaires. Math. Sci. Humaines 95, 5–18 (1986)MathSciNetGoogle Scholar
  26. 26.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)MATHGoogle Scholar
  27. 27.
    Hájek, P.: On very true. Fuzzy Sets and Systems 124, 329–333 (2001)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice-Hall, Englewood Cliffs (1995)MATHGoogle Scholar
  29. 29.
    Maier, D.: The Theory of Relational Databases. Computer Science Press, Rockville (1983)MATHGoogle Scholar
  30. 30.
    Pavelka, J.: On fuzzy logic I, II, III. Z. Math. Logik Grundlagen Math. 25, 45–52, 119–134, 447–464 (1979)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Pollandt, S.: Fuzzy Begriffe. Springer, Heidelberg (1997)MATHGoogle Scholar
  32. 32.
    Prade, H., Testemale, C.: Generalizing database relational algebra for the treatment of incomplete or uncertain information and vague queries. Information Sciences 34, 115–143 (1984)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Raju, K.V.S.V.N., Majumdar, A.K.: Fuzzy functional dependencies and lossless join decomposition of fuzzy relational database systems. ACM Trans. Database Systems 13(2), 129–166 (1988)CrossRefGoogle Scholar
  34. 34.
    Takeuti, G., Titani, S.: Globalization of intuitionistic set theory. Annals of Pure and Applied Logic 33, 195–211 (1987)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Tyagi, B.K., Sharfuddin, A., Dutta, R.N., Tayal, D.K.: A complete axiomatization of fuzzy functional dependencies using fuzzy function. Fuzzy Sets and Systems 151(2), 363–379 (2005)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Radim Bělohlávek
    • 1
  • Vilém Vychodil
    • 1
  1. 1.Department of Computer SciencePalacky University, OlomoucOlomoucCzech Republic

Personalised recommendations