Advertisement

CARSA – An Architecture for the Development of Context Adaptive Retrieval Systems

  • Korinna Bade
  • Ernesto W. De Luca
  • Andreas Nürnberger
  • Sebastian Stober
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3877)

Abstract

Searching the Web and other local resources has become an every day task for almost everybody. However, the currently available tools for searching still provide only very limited support with respect to categorization and visualization of search results as well as personalization. In this paper, we present a system for searching that can be used by an end user and also by researchers in order to develop and evaluate a variety of methods to support a user in searching. The CARSA system provides a very flexible architecture based on web services and XML. This includes the use of different search engines, categorization methods, visualization techniques, and user interfaces. The user has complete control about the features used. This system therefore provides a platform for evaluating the usefulness of different retrieval support methods and their combination.

Keywords

Mobile Device User Interest Mobile User Interface Search Request Search Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stein, B., Meyer zu Eissen, S.: AISEARCH: Category Formation of Web Search Results (2003)Google Scholar
  2. 2.
  3. 3.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communications of the ACM 18(11) (1971)Google Scholar
  4. 4.
    Jaspers, E., Wijnhoven, R., Albers, R., Nesvadba, J., Lukkien, J., Sinitsyn, A., Desurmont, X., Pietarila, P., Palo, J., Truyen, R.: CANDELA - Storage, Analysis and Retrieval of Video Content in Distributed Systems. In: Detyniecki, M., Jose, J.M., Nürnberger, A., van Rijsbergen, C.J.‘. (eds.) AMR 2005. LNCS, vol. 3877, pp. 112–127. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Jung, J.J., Yoon, J.-S., Jo, G.: Collaborative Information Filtering by Using Categorized Bookmarks on the Web. In: Bartenstein, O., Geske, U., Hannebauer, M., Yoshie, O. (eds.) INAP 2001. LNCS, vol. 2543, pp. 237–250. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Chan, P.K.: Constructing Web User Profiles: A Non-invasive Learning Approach. In: Masand, B., Spiliopoulou, M. (eds.) WebKDD 1999. LNCS, vol. 1836, pp. 39–55. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Boyack, K.W., Wylie, B.N., Davidson, G.S.: Domain Visualization Using VxInsight for Science and Technology Management. Journal of the American Society for Information Science and Technologie 53(9), 764–774 (2002)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    De Luca, E.W., Nürnberger, A.: Improving Ontology-Based Sense Folder Classification of Document Collections with Clustering Methods. In: Proc. of the 2nd Intern. Workshop on Adaptive Multimedia Retrieval (AMR) (2004)Google Scholar
  10. 10.
    Abrams, D., Baecker, R., Chignell, M.: Information Archiving with Bookmarks: Personal Web Space Construction and Organization. In: Proc. of the SIGCHI conference on Human factors in computing systems (1998)Google Scholar
  11. 11.
    Nürnberger, A.: Interactive Text Retrieval Supported by Growing Self-Organizing Maps. In: Proc. of the International Workshop on Information Retrieval (2001)Google Scholar
  12. 12.
    Fontijn, W., Nesvadba, J., Sinitsyn, A.: Integrating Media Management Towards Ambient Intelligence. In: Detyniecki, M., Jose, J.M., Nürnberger, A., van Rijsbergen, C.J.‘. (eds.) AMR 2005. LNCS, vol. 3877, pp. 102–111. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Lagus, K., Kaski, S.: Keyword Selection Method for Characterizing Text Document Maps. In: Proc. of the ninth international conference on artificial neural networks (ICANN 1999), vol. 1 (1999)Google Scholar
  14. 14.
    Lieberman, H.: Letizia: An Agent That Assists Web Browsing. In: Proc. of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI 1995) (1995)Google Scholar
  15. 15.
    Chakrabarti, S., Batterrywala, Y.: Mining themes from bookmarks. In: Proc. of the Workshop on Text Mining held at the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (2000)Google Scholar
  16. 16.
    De Luca, E.W., Nürnberger, A.: Ontology-Based Semantic Online Classification of Documents: Supporting Users in Searching the Web. In: Proc. of the European Symposium on Intelligent Technologies (EUNITE) (2004)Google Scholar
  17. 17.
    Dumais, S., Cutrell, E., Chen, H.: Optimizing search by showing results in context. In: Proc. of the SIGCHI conference on Human factors in computing systems (2001)Google Scholar
  18. 18.
    Tanudjaja, F., Mui, L.: Persona: A Contextualized and Personalized Web Search. In: Proc. of the 35th Hawaii International Conference on System Sciences (2002)Google Scholar
  19. 19.
    Lui, F., Yu, C., Meng, W.: Personalized Web Search by Mapping User Queries to Categories. In: Proc. of the 11th International Conference on Information and Knowledge Management (2002)Google Scholar
  20. 20.
    De Luca, E.W., Nürnberger, A.: Supporting Information Retrieval on Mobile Devices. In: Proc. of the 7th International Conference on Human Computer Interaction with Mobile Devices and Services (2005)Google Scholar
  21. 21.
    Bade, K., Nürnberger, A.: Supporting Web Search by User Specific Document Categorization: Intelligent Bookmarks. In: Proc. of the Leipziger Informatik Tage (LIT) (2005)Google Scholar
  22. 22.
    Small, H.: Visualizing science by citation mapping. Journal of the American Society for Information Science 50(9), 799–813 (1999)CrossRefGoogle Scholar
  23. 23.
    Wise, J.A., Thomas, J.J., Pennock, K., Lantrip, D., Pottier, M., Schur, A., Crow, V.: Visualizing the non-visual: Spatial analysis and interaction with information from text documents. In: Proc. of IEEE Symposium on Information Visualization (1995)Google Scholar
  24. 24.
  25. 25.
    Budzik, J., Hammond, K.: Watson: Anticipating and Contextualizing Information Needs. In: 62nd Annual Meeting of the American Society for Information Science (1999)Google Scholar
  26. 26.
    Joachims, T., Freitag, D., Mitchell, T.: WebWatcher: A Tour Guide for the World Wide Web. In: Proc. of the 15th International Joint Conference on Artificial Intelligence (1997)Google Scholar
  27. 27.
    Nürnberger, A., Detyniecki, M.: Weighted Self-Organizing Maps: Incorporating User Feedback. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN/ICONIP 2003. LNCS, vol. 2714, pp. 883–890. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Fellbaum, C.: WordNet, an electronical lexical database (1998)Google Scholar
  30. 30.
    Labrou, Y., Finin, T.: Yahoo! as an ontology: using Yahoo! categories to describe documents. In: Proc. of the 8th Int. Conf. on Information and Knowledge Management (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Korinna Bade
    • 1
  • Ernesto W. De Luca
    • 1
  • Andreas Nürnberger
    • 1
  • Sebastian Stober
    • 1
  1. 1.Information Retrieval Group, Institute for Knowledge and Language EngineeringOtto-von-Guericke-University of MagdeburgMagdeburgGermany

Personalised recommendations