Rank-Ordering Documents According to Their Relevance in Information Retrieval Using Refinements of Ordered-Weighted Aggregations

  • Mohand Boughanem
  • Yannick Loiseau
  • Henri Prade
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3877)

Abstract

Classical information retrieval methods often lose valuable information when aggregating weights, which may diminish the discriminating power between documents. To cope with this problem, the paper presents an approach for ranking documents in IR, based on a vector-based ordering technique already considered in fuzzy logic for multiple criteria analysis purpose. Moreover, the proposed approach uses a possibilistic framework for evaluating queries to a document collection, which distinguishes between descriptors that are certainly relevant and those which are possibly relevant only. The proposal is evaluated on a benchmark collection that allows us to compare the effectiveness of this approach with a classical one. The proposed method provides an improvement of the precision w.r.t Mercure IR system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grossman, D., Frieder, O.: Information Retrieval: Algorithms and Heuristics. Kluwer Academic Publishers, Dordrecht (1998)CrossRefMATHGoogle Scholar
  2. 2.
    Salton, G., McGill, M.: Introduction to modern information retrieval. McGraw-Hill, New York (1983)MATHGoogle Scholar
  3. 3.
    Salton, G., Fox, E., Wu, H.: Extended boolean information retrieval. Communications of the ACM 26, 1022–1036 (1983)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Robertson, S.E.: The probability ranking principle in IR. Journal of Documentation 33, 294–304 (1977)CrossRefGoogle Scholar
  5. 5.
    Yager, R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Transactions on Systems, Man and Cybernetics 18, 183–190 (1988)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dubois, D., Prade, H.: A review of fuzzy sets aggregation connectives. Information Sciences 3, 85–121 (1985)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Fodor, J., Yager, R., Rybalov, A.: Structure of uni-norms. International Journal of Uncertainty, Fuzzyness and Knowledge Based Systems 5, 411–427 (1997)CrossRefMATHGoogle Scholar
  8. 8.
    Schamber, L.: Relevance and information behavior. In: Annual Review of Information Science and Technology, vol. 29, pp. 3–48. Learned Information, INC., Medford (1994)Google Scholar
  9. 9.
    Kraft, D., Bordogna, G., Pasi, G.: Fuzzy set techniques in information retrieval. In: Fuzzy Sets in Approximate Reasoning and Information Systems, pp. 469–510. Kluwer Academic Publishers, Dordrecht (1999)CrossRefGoogle Scholar
  10. 10.
    Bordogna, G., Pasi, G.: Linguistic aggregation operators in fuzzy information retrieval. Int. J. Intell. Syst. 10, 233–248 (1995)CrossRefGoogle Scholar
  11. 11.
    Losada, D., Díaz-Hermida, F., Bugarín, A., Barro, S.: Experiments on using fuzzy quantified sentences in adhoc retrieval. In: Proc. of The 2004 ACM Symp. on Applied Computing, SAC 2004, pp. 1059–1064. ACM Press, New York (2004)Google Scholar
  12. 12.
    Prade, H., Testemale, C.: Application of possibility and necessity measures to documentary information retrieval. In: Bouchon, B., Yager, R.R. (eds.) Uncertainty in Knowledge-Based Systems. LNCS, vol. 286, pp. 265–275. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  13. 13.
    Boughanem, M., Loiseau, Y., Prade, H.: Graded pattern matching in a multilingual context. In: Proc. 7th Meeting Euro Working Group on Fuzzy Sets, Eurofuse, Varena, pp. 121–126 (2002)Google Scholar
  14. 14.
    Dubois, D., Prade, H.: Semantic of quotient operators in fuzzy relational databases. Fuzzy Sets and Systems 78, 89–93 (1996)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dubois, D., Fargier, H., Prade, H.: Beyond min aggregation in multicriteria decision (ordered) weighted min, discri-min, leximin. In: Yager, R., Kacprzyk, J. (eds.) The Ordered Weighted Averaging Operators, pp. 181–192. Kluwer, Dordrecht (1997)CrossRefGoogle Scholar
  16. 16.
    Moulin, H.: Axioms of Cooperative Decision-Making. Cambridge University Press, Cambridge (1988)CrossRefMATHGoogle Scholar
  17. 17.
    Buell, D.: An analysis of some fuzzy subset applications to information retrieval systems. Fuzzy Sets and Systems 7, 35–42 (1982)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Boughanem, M., Dkaki, T., Mothe, J., Soule-Dupuy, C.: Mercure at TREC-7. In: Proc. of TREC-7, pp. 135–141 (1998)Google Scholar
  19. 19.
    Robertson, S.E., Walker, S.: Okapi-keenbow at TREC-8. In: Proc. 8th Text Retrieval Conf., TREC-8, pp. 60–67 (1999)Google Scholar
  20. 20.
    Porter, M.: An algorithm for suffix stripping. Program 14, 130–137 (1980)CrossRefGoogle Scholar
  21. 21.
    Järvelin, K., Kekäläinen, J.: Ir evaluation methods for retrieving highly relevant documents. In: Belkin, N., Ingwersen, P., Leong, M.K. (eds.) Proc. of the 23rd ACM Sigir Conf. on Research and Development of Information Retrieval, Athens, Greece, pp. 41–48. ACM Press, New York (2000)Google Scholar
  22. 22.
    Dubois, D., Prade, H.: On different ways of ordering conjoint evaluations. In: Proc. of the 25th Linz seminar on Fuzzy Set Theory, Linz, Austria, pp. 42–46 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mohand Boughanem
    • 1
  • Yannick Loiseau
    • 1
  • Henri Prade
    • 1
  1. 1.Institut de recherche en informatique de ToulouseToulouse

Personalised recommendations