Improving Access to Multimedia Using Multi-source Hierarchical Meta-data

  • Trevor P. Martin
  • Yun Shen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3877)

Abstract

Efficient retrieval of multi-media content depends on the availability of adequate meta-data to indicate the nature of the content. Such meta-data often contains useful hierarchical categorisation but is frequently not consistent between different sources. We outline a method to identify equivalent instances which are described by different meta-data schemata, and to find correspondences between hierarchies, which may be used to improve instance matching. Some successful initial tests of the method on large movie databases are reported.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldwin, J.F.: The Management of Fuzzy and Probabilistic Uncertainties for Knowledge Based Systems. In: Shapiro, S.A. (ed.) Encyclopedia of AI, pp. 528–537. John Wiley, Chichester (1992)Google Scholar
  2. 2.
    Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: FRIL - Fuzzy and Evidential Reasoning in AI, p. 391. Research Studies Press (John Wiley), United Kingdom (1995)Google Scholar
  3. 3.
    Berlin, J., Motro, A.: Autoplex: Automated Discovery of Content for Virtual Databases. In: Batini, C., Giunchiglia, F., Giorgini, P., Mecella, M. (eds.) CoopIS 2001. LNCS, vol. 2172, pp. 108–122. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., Fienberg, S.: Adaptive Name Matching in Information Integration. IEEE Intelligent Systems 18, 16–23 (2003)CrossRefGoogle Scholar
  5. 5.
    Chang, K.C.C., Garcia-Molina, H.: Approximate Query Mapping: Accounting for Translation Closeness. VLDB Journal 10(2-3), 155–181 (2001)MATHGoogle Scholar
  6. 6.
    Chang, K.C.C., Garcia-Molina, H., Paepcke, A.: Boolean Query Mapping Across Heterogeneous Information Sources. IEEE Transactions on Knowledge and Data Engineering 8(4), 515–521 (1996)CrossRefGoogle Scholar
  7. 7.
    Dey, D., Sarkar, S., De, P.: A Distance-Based Approach to Entity Reconciliation in Heterogeneous Databases. IEEE Transactions on Knowledge and Data Engineering 14(3), 567–582 (2002)CrossRefGoogle Scholar
  8. 8.
    Ding, Y., Foo, S.: Ontology research and development. Part 2 - a review of ontology mapping and evolving. Journal of Information Science 28(5), 375–388 (2002)Google Scholar
  9. 9.
    Doan, A., Domingos, P., Halevy, A.: Learning to Match the Schemas of Data Sources A Multistrategy Approach. Machine Learning 50(3), 279–301 (2003)CrossRefMATHGoogle Scholar
  10. 10.
    Elfeky, M.G., Verykios, V.S., Elmagarmid, A.K.: TAILOR: A Record Linkage Tool Box. In: Proc. International conference on data engineering, pp. 17–28. IEEE Computer Society, San Jose (2002)CrossRefGoogle Scholar
  11. 11.
    Fellegi, I.P., Sunter, A.B.: A Theory for Record Linkage. J. American Statistical Assoc. 64, 1183–1210 (1969)CrossRefMATHGoogle Scholar
  12. 12.
    Gal, A., Trombetta, A., Anaby-Tavor, A., Montesi, D.: A Model for Schema Integration in Heterogeneous Databases. In: Proc. Seventh International Database Engineering and Applications Symposium (IDEAS 2003), pp. 2–11. IEEE Press, Hong Kong (2003)CrossRefGoogle Scholar
  13. 13.
    Madhavan, J., Bernstein, P.A., Domingos, P., Halevy, A.Y.: Representing and Reasoning about Mappings between Domain Models. In: Proceedings of the National Conference on Artificial Intelligence, pp. 80–86 (2002)Google Scholar
  14. 14.
    Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid. In: Proceedings of the International Conference on Very Large Data Bases, pp. 49–58 (2001)Google Scholar
  15. 15.
    Martin, T.P.: Searching and Smushing on the Semantic Web - Challenges for Soft Computing. Studies in Fuzziness and Soft Computing 139, 167–186 (2004)CrossRefGoogle Scholar
  16. 16.
    Martin, T.P.: Soft Integration of Information with Semantic Gaps. In: Sanchez, E. (ed.) Fuzzy Logic and the Semantic Web. Elsevier, Amsterdam (2005)Google Scholar
  17. 17.
    Newcombe, H.B., Kennedy, J.M., Axford, S.J., James, A.P.: Automatic Linkage of Vital Records. Science 130, 954–959 (1959)CrossRefGoogle Scholar
  18. 18.
    Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching. The VLDB Journal 10, 334–350 (2001)CrossRefMATHGoogle Scholar
  19. 19.
    Nguyen, H.T.: On Random Sets and Belief Functions. J. Math. Anal. & Appl. 65, 531–542 (1978)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Trevor P. Martin
    • 1
    • 2
  • Yun Shen
    • 1
  1. 1.Artificial Intelligence Group, Dept of Engineering MathsUniversity of BristolUK
  2. 2.Intelligent Systems Lab, BT Research and VenturingCurrently Senior Research Fellow, Computational Intelligence GroupIpswichUK

Personalised recommendations