Writer Identification for Smart Meeting Room Systems

  • Marcus Liwicki
  • Andreas Schlapbach
  • Horst Bunke
  • Samy Bengio
  • Johnny Mariéthoz
  • Jonas Richiardi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3872)

Abstract

In this paper we present a text independent on-line writer identification system based on Gaussian Mixture Models (GMMs). This system has been developed in the context of research on Smart Meeting Rooms. The GMMs in our system are trained using two sets of features extracted from a text line. The first feature set is similar to feature sets used in signature verification systems before. It consists of information gathered for each recorded point of the handwriting, while the second feature set contains features extracted from each stroke. While both feature sets perform very favorably, the stroke-based feature set outperforms the point-based feature set in our experiments. We achieve a writer identification rate of 100% for writer sets with up to 100 writers. Increasing the number of writers to 200, the identification rate decreases to 94.75%.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Collobert, R., Bengio, S., Mariéthoz, J.: Torch: a modular machine learning software library. Technical report, IDIAP (2002)Google Scholar
  2. 2.
    Czyz, J., Bengio, S., Marcel, C., Vandendorpe, L.: Scalability analysis of audio-visual person identity verification. In: Audio- and Video-based Biometric Person Authentication, pp. 752–760 (2003)Google Scholar
  3. 3.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of Royal Statistical Society 39, 1–38 (1977)MATHMathSciNetGoogle Scholar
  4. 4.
    Fasel, B., Luettin, J.: Automatic facial expression analysis: A survey. Pattern Recognition 36, 259–275 (2003)MATHCrossRefGoogle Scholar
  5. 5.
    Grudin, M.A.: On internal representations in face recognition systems. Pattern Recognition 33, 1161–1177 (2000)CrossRefGoogle Scholar
  6. 6.
    Jaeger, S., Manke, S., Reichert, J., Waibel, A.: Online handwriting recognition: the NPen++ recognizer. Int. Journal on Document Analysis and Recognition 3, 169–180 (2001)CrossRefGoogle Scholar
  7. 7.
    Jain, A., Griess, F., Connell, S.: On-line signature verification. Pattern Recognition 35, 2663–2972 (2002)Google Scholar
  8. 8.
    Johansson, S.: The tagged LOB Corpus: User’s Manual. Norwegian Computing Centre for the Humanities, Norway (1986)Google Scholar
  9. 9.
    Liwicki, M., Bunke, H.: Handwriting recognition of whiteboard notes. In: Proc. 12th Conf. of the Int. Graphonomics Society, pp. 118–122 (2005)Google Scholar
  10. 10.
    Liwicki, M., Bunke, H.: IAM-OnDB – an on-line English sentence database acquired from handwritten text on a whiteboard. In: 8th Int. Conf. on Document Analysis and Recognition (2005) (Accepted for publication)Google Scholar
  11. 11.
    Mariéthoz, J., Bengio, S.: A comparative study of adaptation methods for speaker verification. In: Int. Conf. on Spoken Language Processing, Denver, CO, USA, pp. 581–584 (2002)Google Scholar
  12. 12.
    McCowan, L., Gatica-Perez, D., Bengio, S., Lathoud, G., Barnard, M., Zhang, D.: Automatic analysis of multimodal group actions in meetings. IEEE Trans. on Pattern Analysis and Machine Intelligence 27, 305–317 (2005)CrossRefGoogle Scholar
  13. 13.
    Moore, D.: The IDIAP smart meeting room. Technical report, IDIAP-Com (2002)Google Scholar
  14. 14.
    Morgan, N., Baron, D., Edwards, J., Ellis, D., Gelbart, D., Janin, A., Pfau, T., Shriberg, E., Stolcke, A.: The meeting project at ICSI. In: Proc. Human Language Technologies Conf., pp. 246–252 (2001)Google Scholar
  15. 15.
    Reiter, S., Rigoll, G.: Segmentation and classification of meeting events using multiple classifier fusion and dynamic programming. In: Proc. 17th Int. Conf. on Pattern Recognition, pp. 434–437 (2004)Google Scholar
  16. 16.
    Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted Gaussian mixture models. Digital Signal Processing 10, 19–41 (2000)CrossRefGoogle Scholar
  17. 17.
    Richiardi, J., Drygajlo, A.: Gaussian Mixture Models for on-line signature verification. In: Proc. 2003 ACM SIGMM workshop on Biometrics methods and applications, pp. 115–122 (2003)Google Scholar
  18. 18.
    Sanderson, C., Paliwal, K.K.: Fast features for face authentication under illumination direction changes. Pattern Recognition Letters 24, 2409–2419 (2003)CrossRefGoogle Scholar
  19. 19.
    Schenkel, M., Guyon, I., Henderson, D.: On-line cursive script recognition using time delay neural networks and hidden Markov models. Machine Vision and Applications 8, 215–223 (1995)CrossRefGoogle Scholar
  20. 20.
    Schlapbach, A., Bunke, H.: Off-line handwriting identification using HMM based recognizers. In: Proc. 17th Int. Conf. on Pattern Recognition, vol. 2, pp. 654–658 (2004)Google Scholar
  21. 21.
    Schomaker, L.: From handwriting analysis to pen-computer applications. IEE Electronics & Communication Engineering Journal 10, 93–102 (1998)CrossRefGoogle Scholar
  22. 22.
    Waibel, A., Schultz, T., Bett, M., Malkin, R., Rogina, I., Stiefelhagen, R., Yang, J.: SMaRT: The Smart Meeting Room Task at ISL. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 4, pp. 752–755 (2003)Google Scholar
  23. 23.
    Wellner, P., Flynn, M., Guillemot, M.: Browsing recorded meetings with Ferret. In: Machine Learning for Multimodal Interaction, pp. 12–21 (2004)Google Scholar
  24. 24.
    Yamazaki, Y., Nagao, T., Komatsu, N.: Text-indicated writer verification using hidden Markov models. In: Proc. 7th Int. Conf. on Document Analysis and Recognition, pp. 329–332 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Marcus Liwicki
    • 1
  • Andreas Schlapbach
    • 1
  • Horst Bunke
    • 1
  • Samy Bengio
    • 2
  • Johnny Mariéthoz
    • 2
  • Jonas Richiardi
    • 3
  1. 1.Department of Computer ScienceUniversity of BernBernSwitzerland
  2. 2.IDIAPMartignySwitzerland
  3. 3.Perceptual Artificial Intelligence Laboratory, Signal Processing InstituteSwiss Federal Institute of Technology, Lausanne FSTI-ITS-LIAPLausanneSwitzerland

Personalised recommendations