Advertisement

Quantum Correction to the Semiclassical Electron-Phonon Scattering Operator

  • V. Sverdlov
  • H. Kosina
  • C. Ringhofer
  • M. Nedjalkov
  • S. Selberherr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3743)

Abstract

A quantum kinetic equation approach is adopted in order to incorporate quantum effects such as collisional broadening due to finite lifetime of single particle states, and collisional retardation due to finite collision time. A quantum correction to the semiclassical electron distribution function is obtained using an asymptotic expansion for the quantum electron-phonon collision operator in its weak formulation. Based on this expansion, the evolution of a highly peaked, nonequilibrium distribution function in Si and Ge is analyzed. It is shown that in Ge and Si, where the electron-phonon interaction is weak, the quantum correction due to the finite collision time leads to an extra broadening of new replicas of the initial distribution function. As the observation time exceeds the collision duration, the quantum correction starts to diminish and the semiclassical solution for a particular replica is recovered.

Keywords

Quantum Correction Collision Time Resonant Tunneling Diode Fermi Golden Rule Scattering Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bowen, R., Klimeck, G., Lake, R., Frensley, W., Moise, T.: Quantitative resonant tunneling diode simulation. J. Appl. Phys. 81, 3207–3213 (1997)CrossRefGoogle Scholar
  2. 2.
    Gurov, T., Whitlock, P.: An efficient backward Monte Carlo estimator for solving of a quantum-kinetic equation with memory kernel. Mathematics and Computers in Simulation 60, 85–105 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Kosina, H., Nedjalkov, M., Selberherr, S.: Quantum Monte Carlo simulation of a resonant tunneling diode including phonon scattering, pp. 190–193. Computational Publications, San Francisco (2003)Google Scholar
  4. 4.
    Laux, S., Kumar, A., Fischetti, M.: Analysis of quantum ballistic electron transport in ultrasmall silicon devices including space-charge and geometric effects. J. Appl. Phys. 95, 5545–5582 (2004)CrossRefGoogle Scholar
  5. 5.
    Levinson, I.: Translational invariance in uniform fields and the equation for the density matrix in the Wigner representation. Soviet Phys. JETP 30, 362–367 (1970)MathSciNetGoogle Scholar
  6. 6.
    Nedjalkov, M., Kosina, H., Kosik, R., Selberherr, S.: A space dependent Wigner equation including phonon interaction. J. Compt. Electronics 1, 27–31 (2002)CrossRefGoogle Scholar
  7. 7.
    Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.: Unified particle approach toWigner-Boltzmann transport in small semiconductor devices. Physical Review B 70, 1–16 (2004) 115319CrossRefGoogle Scholar
  8. 8.
    Reggiani, L.: Hot-Electron Transport in Semiconductors. Topics in Applied Physics, vol. 58. Springer, Heidelberg (1985)Google Scholar
  9. 9.
    Ringhofer, C., Nedjalkov, M., Kosina, H., Selberherr, S.: Semi-classical approximation of electron-phonon scattering beyond Fermi’s Golden Rule. SIAM J. Appl. Math. 64, 1933–1953 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Schilp, J., Kuhn, T., Mahler, G.: Electron-phonon quantum kinetics in pulseexcited semiconductors: Memory and renormalization effects. Physical Review B 50, 5435–5447 (1994)CrossRefGoogle Scholar
  11. 11.
    Wigner, E.: On the quantum correction for thermodynamic equilibrium. Physical Review 40, 749–759 (1932)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • V. Sverdlov
    • 1
  • H. Kosina
    • 1
  • C. Ringhofer
    • 2
  • M. Nedjalkov
    • 1
  • S. Selberherr
    • 1
  1. 1.Institute for MicroelectronicsTechnical University of ViennaViennaAustria
  2. 2.Department of MathematicsArizona State UniversityTempeUSA

Personalised recommendations