Advertisement

Label-Free Quantitative In Vitro Live Cell Imaging with Digital Holographic Microscopy

  • B. KemperEmail author
  • A. Bauwens
  • D. Bettenworth
  • M. Götte
  • B. Greve
  • L. Kastl
  • S. Ketelhut
  • P. Lenz
  • S. Mues
  • J. Schnekenburger
  • A. Vollmer
Chapter
Part of the Bioanalytical Reviews book series (BIOREV, volume 2)

Abstract

Label-free quantitative in vitro imaging of living cell cultures with light microscopy is an important tool for various research fields in the life sciences. Digital holographic microscopy (DHM) provides contactless, minimally invasive quantitative phase contrast imaging and can be integrated as a module in common research microscopes. Due to the numerical reconstruction of quantitative phase images, multi-focus imaging is achieved from a single digital hologram. The evaluation of the recorded quantitative phase contrast images allows the extraction of data for simplified object tracking and image segmentation. The special DHM feature of numerical autofocusing avoids mechanical focus realignment. As quantitative DHM phase imaging is based on the detection of optical path length changes in transmission, the method only requires low light intensities for object illumination which minimizes the interaction with the sample. Thus, minimally invasive long-term time-lapse investigations for quantitative monitoring of dynamic changes of cell morphology, motility, and proliferation are accessible. In addition, the integral cellular refractive index, which is related to intracellular solute concentrations as well as cellular volume and dry mass, is available. The chapter starts with an introduction to DHM for live cell observation and procedures for the extraction of biophysical parameters from quantitative DHM phase contrast images. After the physical basis has been laid out, several selected applications of in vitro live cell analysis are described. This includes the characterization of suspended cells and spherical intracellular organelles as well as the quantification of the cellular response to osmotic stimulation, drugs, toxins, nanomaterials, and genetic modifications. Subsequent paragraphs illustrate how DHM can be applied to quantify cell motility, migration, and the morphology of adherent cell cultures. Finally, phenotyping based on cell thickness determination, dynamic multimodal imaging of cellular growth, proliferation, and wound healing in vitro as well as applications in toxicity testing of pathogens and the characterization of cell nanomaterial interactions are demonstrated.

Keywords

Biophysical cell analysis Digital holographic microscopy Label-free in vitro imaging Quantitative microscopy Quantitative phase imaging 

References

  1. 1.
    Ntziachristos V (2006) Fluorescence molecular imaging. Ann Biomed Eng 8:1–33Google Scholar
  2. 2.
    Goldys EM (2009) Fluorescence applications in biotechnology and life sciences. Wiley-Blackwell, HobokenGoogle Scholar
  3. 3.
    Schermelleh L, Heintzmann RB, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190(2):165–175PubMedPubMedCentralGoogle Scholar
  4. 4.
    Spence MT, Johnson ID (2010) The molecular probes handbook: a guide to fluorescent probes and labeling technologies. Live Technologies Corporation, CarlsbadGoogle Scholar
  5. 5.
    Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev 11:227–256PubMedGoogle Scholar
  6. 6.
    Chang C, Sud D, Mycek M (2007) Fluorescence lifetime imaging microscopy. Methods Cell Biol 81:495PubMedGoogle Scholar
  7. 7.
    Kroll A, Dierker C, Rommel C, Hahn D, Wohlleben W, Schulze-Isfort C, Göbbert C, Voetz M, Hardinghaus F, Schnekenburger J (2011) Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol 8(1):1Google Scholar
  8. 8.
    Shimomura O (2005) The discovery of aequorin and green fluorescent protein. J Microsc 217(1):3–15Google Scholar
  9. 9.
    Felgner PL, Gadenk TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84(21):7413–7417PubMedPubMedCentralGoogle Scholar
  10. 10.
    Tsampoula X, Taguchi K, Cizmar T, Garces-Chavez V, Ma N, Mohanty S, Mohanty K, Gunn-Moore F, Dholakia A (2008) Fibre based cellular transfection. Opt Express 16(21):17007–17013PubMedGoogle Scholar
  11. 11.
    Drexler W (2004) Ultrahigh-resolution optical coherence tomography. J Biomed Opt 9(1):47–74PubMedGoogle Scholar
  12. 12.
    Fercher AF (2010) Optical coherence tomography–development, principles, applications. Z Med Phys 20(4):251–276PubMedGoogle Scholar
  13. 13.
    Seddon AB (2013) Mid-infrared (IR) – a hot topic: the potential for using mid-IR light for non-invasive early detection of skin cancer in vivo. Phys Stat Solid (b) 250(5):1020–1027Google Scholar
  14. 14.
    Hughes C, Baker MJ (2016) Can mid-infrared biomedical spectroscopy of cells, fluids and tissue aid improvements in cancer survival? A patient paradigm. Analyst 141(2):467–475PubMedGoogle Scholar
  15. 15.
    Rodriguez LG, Lockett SJ, Holtom GR (2006) Coherent anti-stokes Raman scattering microscopy: a biological review. Cytometry A 69(8):779–791PubMedGoogle Scholar
  16. 16.
    Cuche E, Marquet P, Depeursinge C (1999) Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl Optics 38(34):6994–7001Google Scholar
  17. 17.
    Carl D, Kemper B, Wernicke G, von Bally G (2004) Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. Appl Optics 43(36):6536–6544Google Scholar
  18. 18.
    Popescu G, Deflores LP, Vaughan JC, Badizadegan K, Iwai H, Dasari RR, Feld MS (2004) Fourier phase microscopy for investigation of biological structures and dynamics. Opt Lett 29(21):2503–2505PubMedGoogle Scholar
  19. 19.
    Marquet P, Rappaz B, Magistretti PJ, Cuche E, Emery Y, Colomb T, Depeursinge C (2005) Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt Lett 30(5):468–470PubMedGoogle Scholar
  20. 20.
    Mann CJ, Yu L, Lo CM, Kim MK (2005) High-resolution quantitative phase-contrast microscopy by digital holography. Opt Express 13(22):8693–8698PubMedGoogle Scholar
  21. 21.
    Ikeda T, Popescu G, Dasari RR, Feld MS (2005) Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt Lett 30(10):1165–1167PubMedGoogle Scholar
  22. 22.
    Kemper B, Carl D, Schnekenburger J, Bredebusch I, Schäfer M, Domschke W, von Bally G (2006) Investigation of living pancreas tumor cells by digital holographic microscopy. J Biomed Opt 11(3):34005PubMedGoogle Scholar
  23. 23.
    Popescu G, Ikeda T, Dasari RR, Feld MS (2006) Diffraction phase microscopy for quantifying cell structure and dynamics. Opt Lett 31(6):775–777PubMedGoogle Scholar
  24. 24.
    Choi W, Fang-Yen C, Badizadegan K, Oh S, Lue N, Dasari RR, Feld MS (2007) Tomographic phase microscopy. Nat Methods 4:717–719PubMedGoogle Scholar
  25. 25.
    Kemper B, von Bally G (2008) Digital holographic microscopy for live cell applications and technical inspection. Appl Optics 47(4):A52–A61Google Scholar
  26. 26.
    Debailleul M, Georges V, Simon B, Morin R, Haeberlé O (2009) High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples. Opt Lett 34(1):79–81PubMedGoogle Scholar
  27. 27.
    Kozacki T, Krajewski R, Kujawińska M (2009) Reconstruction of refractive-index distribution in off-axis digital holography optical diffraction tomographic system. Opt Express 17(16):13758–13767PubMedGoogle Scholar
  28. 28.
    Shaked NT, Rinehart MT, Wax A (2009) Dual-interference-channel quantitative-phase microscopy of live cell dynamics. Opt Lett 34(6):767–769PubMedPubMedCentralGoogle Scholar
  29. 29.
    Bon P, Maucort G, Wattellier B, Monneret S (2009) Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt Express 17(15):13080–13094PubMedGoogle Scholar
  30. 30.
    Jang J, Bae CY, Park JK, Ye JC (2010) Self-reference quantitative phase microscopy for microfluidic devices. Opt Lett 35(4):514–516PubMedGoogle Scholar
  31. 31.
    Wang Z, Millet L, Mir M, Ding H, Unarunotai S, Rogers J, Gilette MU, Popescu G (2011) Spatial light interference microscopy (SLIM). Opt Express 19(2):1016–1026PubMedPubMedCentralGoogle Scholar
  32. 32.
    Frank J, Matrisch J, Horstmann J, Altmeyer S, Wernicke G (2011) Refractive index determination of transparent samples by noniterative phase retrieval. Appl Optics 50(4):427–433Google Scholar
  33. 33.
    Wang Z, Tangella K, Balla A, Popescu G (2011) Tissue refractive index as marker of disease. J Biomed Opt 16(11):116017PubMedPubMedCentralGoogle Scholar
  34. 34.
    Phillips KG, Velasco CR, Kolatkar A, Luttgen M, Bethel K, Duggan B, Kuhn P, McCarthy OJ (2012) Optical quantification of cellular mass, volume, and density of circulating tumor cells identified in an ovarian cancer patient. Front Oncol 2:72PubMedPubMedCentralGoogle Scholar
  35. 35.
    Bettenworth D, Lenz P, Krausewitz P, Brückner M, Ketelhut S, von Bally G, Domagk D, Kemper B (2013) Quantification of inflammation in colonic tissue sections and wound healing in vitro with digital holographic microscopy. SPIE Proc 8797:879702Google Scholar
  36. 36.
    Marquet P, Depeursinge C, Magistretti PJ (2014) Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders. Neurophotonics 1(2):020901PubMedPubMedCentralGoogle Scholar
  37. 37.
    Jenkins MH, Gaylord TK (2015) Quantitative phase microscopy via optimized inversion of the phase optical transfer function. Appl Optics 54(28):8566–8579Google Scholar
  38. 38.
    Barankov R, Baritaux JC, Mertz J (2015) High-resolution 3D phase imaging using a partitioned detection aperture: a wave-optic analysis. J Opt Soc Am A 32(11):2123–2135Google Scholar
  39. 39.
    Kreis T (1996) In: Osten W (ed) Holographic interferometry: principles and methods, vol 1. Akademie-Verlag, BerlinGoogle Scholar
  40. 40.
    Beek M, Hentschel W (2000) Laser metrology – a diagnostic tool in automotive industry. Opt Lasers Eng 34:101–120Google Scholar
  41. 41.
    Ostrovsky YI, Shchepinov VP, Yakovlev VV (2013) Holographic interferometry in experimental mechanics. Wiley, New YorkGoogle Scholar
  42. 42.
    Cuche E, Bevilacqua F, Depeursinge C (1999) Digital holography for quantitative phase-contrast imaging. Opt Lett 24(5):291–293PubMedGoogle Scholar
  43. 43.
    Zernike F (1955) How I discovered phase contrast. Science 121(3141):345–349PubMedGoogle Scholar
  44. 44.
    Nomarski G (1955) Differential microinterferometer with polarized waves. J Phys Radium 16(9):9S–11SGoogle Scholar
  45. 45.
    Gabor D (1948) A new microscopic principle. Nature 161(4098):777–778PubMedGoogle Scholar
  46. 46.
    Leith EN, Upatnieks J (1962) Reconstructed wavefronts and communication theory. J Opt Soc Am 52(10):1123–1130Google Scholar
  47. 47.
    Leith EN, Upatnieks J (1963) Wavefront reconstruction with continuous-tone objects. J Opt Soc Am 53(12):1377–1381Google Scholar
  48. 48.
    Schnars U, Jüptner WP (2002) Digital recording and numerical reconstruction of holograms. Meas Sci Technol 13(9):R85Google Scholar
  49. 49.
    Lee K, Kim K, Jung J, Heo JH, Cho S, Lee S, Chang G, Jo YJ, Park H, Park YK (2013) Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications. Sensors 13(4):4170–4191PubMedGoogle Scholar
  50. 50.
    Kim MK (2010) Principles and techniques of digital holographic microscopy. SPIE Rev 1:018005Google Scholar
  51. 51.
    Popescu G (2011) Quantitative phase imaging of cells and tissues. McGraw Hill Professional, New YorkGoogle Scholar
  52. 52.
    Kemper B, Carl D, Höink A, von Bally G, Bredebusch I, Schnekenburger J (2006) Modular digital holographic microscopy system for marker free quantitative phase contrast imaging of living cells. SPIE Proc 6191:61910TGoogle Scholar
  53. 53.
    Rommel CE, Dierker C, Schmidt L, Przibilla S, von Bally G, Kemper B, Schnekenburger J (2010) Contrast-enhanced digital holographic imaging of cellular structures by manipulating the intracellular refractive index. J Biomed Opt 15(4):041509PubMedGoogle Scholar
  54. 54.
    Kemper B, Langehanenberg P, Höink A, von Bally G, Wottowah F, Schinkinger G, Guck J, Käs J, Bredebusch I, Schnekenburger J, Schütze K (2010) Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy. J Biophotonics 3(7):425–431PubMedGoogle Scholar
  55. 55.
    Esseling M, Kemper B, Antkowiak M, Stevenson DJ, Chaudet L, Neil MA, French PW, von Bally G, Dholakia K, Deny C (2012) Multimodal biophotonic workstation for live cell analysis. J Biophotonics 5(1):9–13PubMedGoogle Scholar
  56. 56.
    Barroso Á, Woerdemann M, Vollmer A, von Bally G, Kemper B, Denz C (2013) Three-dimensional exploration and mechano-biophysical analysis of the inner structure of living cells. Small 9:885–893PubMedGoogle Scholar
  57. 57.
    Odenthal-Schnittler M, Schnittler HJ, Kemper B (2016) Online quantitative phase imaging of vascular endothelial cells under fluid shear stress utilizing digital holographic microscopy. SPIE Proc 9718:97180UGoogle Scholar
  58. 58.
    Kemper B, Wibbeling J, Ketelhut S (2014) Analysis of mixed cell cultures with quantitative digital holographic phase microscopy. SPIE Proc 9129:91290WGoogle Scholar
  59. 59.
    Kemper B, Vollmer A, Rommel CE, Schnekenburger J, von Bally G (2011) Simplified approach for quantitative digital holographic phase contrast imaging of living cells. J Biomed Opt 16(2):026014PubMedGoogle Scholar
  60. 60.
    Schubert R, Vollmer A, Ketelhut S, Kemper B (2014) Enhanced quantitative phase imaging in self-interference digital holographic microscopy using an electrically focus tunable lens. Biomed Opt Express 5(12):4213–4222PubMedPubMedCentralGoogle Scholar
  61. 61.
    Poon TC (ed) (2006) Digital holography and three-dimensional display. Springer, BostonGoogle Scholar
  62. 62.
    Yaroslavsky L (2004) Digital holography and digital image processing: principles, methods, algorithms. Kluwer Academic Publishers, BostonGoogle Scholar
  63. 63.
    Kreis T (2005) Handbook of holographic interferometry: optical and digital methods. Wiley-VCH, WeinheimGoogle Scholar
  64. 64.
    Kim MK, Yu L, Mann CJ (2006) Interference techniques in digital holography. J Opt A8:518–523Google Scholar
  65. 65.
    Goodman JW (1996) Introduction to Fourier optics. McGraw-Hill, New YorkGoogle Scholar
  66. 66.
    Colomb T, Montfort F, Depeursinge C (2008) Small reconstruction distance in convolution formalism. Digital holography and three-dimensional imaging. OSA Technical Digest, Optical Society of America, St. PetersburgGoogle Scholar
  67. 67.
    De Nicola S, Finizio A, Pierattini G, Ferraro P, Alfieri D (2005) Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes. Opt Express 13:9935–9940PubMedGoogle Scholar
  68. 68.
    Kemper B, Kosmeier S, Langenhanenberg P, von Bally G, Bredebusch I, Domschke W, Schnekenburger J (2007) Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy. J Biomed Opt 12:054009PubMedGoogle Scholar
  69. 69.
    Shaked NT, Zhu Y, Bursac N, Wax A (2010) Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics. J Biomed Opt 15(3):030503PubMedPubMedCentralGoogle Scholar
  70. 70.
    Klokkers J, Langenhanenberg P, Kemper B, Kosmeier S, von Bally G, Riethmüller C, Wunder F, Sindic A, Pavenstädt H, Schlatter E, Edemir B (2009) Atrial natriuretic peptide and nitric oxide signaling antagonizes vasopressin-mediated water permeability in inner medullary collecting duct cells. Am J Physiol Renal Physiol 297(3):693–703Google Scholar
  71. 71.
    Creath K (1993) Temporal phase measurement methods. In: Robinson D, Reid G (eds) Interferogram analysis. Institute of Physics Publishing, Bristol, pp 94–140Google Scholar
  72. 72.
    Creath K (1994) Phase-shifting holographic interferometry. In: Rastogi RK (ed) Holographic interferometry. Springer, Berlin, pp 109–150Google Scholar
  73. 73.
    Liebling M, Blu T, Unser M (2004) Complex-wave retrieval from a single off-axis hologram. J Opt Soc Am A 21(3):367–377Google Scholar
  74. 74.
    Kemper B, Kandualla J, Dirksen D, von Bally G (2003) Optimization of spatial phase shifting in endoscopic electronic-speckle-pattern-interferometry. Opt Commun 217:151–160Google Scholar
  75. 75.
    Remmersmann C, Stürwald S, Kemper B, Langenhanenberg P, von Bally G (2009) Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging. Appl Optics 48:1463–1472Google Scholar
  76. 76.
    Langehanenberg P, von Bally G, Kemper B (2011) Autofocusing in digital holographic microscopy. 3D. Research 2(1):1–11Google Scholar
  77. 77.
    Marquet P, Rappaz B, Charrière F, Emery Y, Depeursinge C, Magistretti P (2007) Analysis of cellular structure and dynamics with digital holographic microscopy. SPIE Proc 6633:66330FGoogle Scholar
  78. 78.
    Takeda M, Ina H, Kobayashi S (1982) Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J Opt Soc Am 72:156–160Google Scholar
  79. 79.
    Kreis T (1986) Digital holographic interference-phase measurement using the fourier transform method. J Opt Soc Am A 3:847–855Google Scholar
  80. 80.
    Rasheed S, Nelson-Rees WA, Toth EM, Amstein P, Gardner MB (1974) Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer 33:1027–1033PubMedGoogle Scholar
  81. 81.
    Kemper B, Langenhanenberg P, Kosmeier S, Schlichthaber F, Remmersmann C, von Bally G, Rommel C, Dierker C, Schnekenburger J (2013) Digital holographic microscopy: quantitative phase imaging and applications in live cell analysis. Handbook of coherent-domain optical methods. Springer, Berlin, pp 215–257Google Scholar
  82. 82.
    Dubois F, Schockaert C, Callens N, Yourassowsky C (2006) Focus plane detection criteria in digital holography microscopy by amplitude analysis. Opt Express 14:5895–5908PubMedGoogle Scholar
  83. 83.
    Langehanenberg P, Kemper B, Dirksen D, von Bally G (2008) Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging. Appl Optics 47:D176–D182Google Scholar
  84. 84.
    Groen FC, Young IT, Ligthart G (1985) A comparison of different focus functions for use in autofocus algorithms. Cytometry A 6:81–91Google Scholar
  85. 85.
    Sun Y, Duthaler S, Nelson BJ (2004) Autofocusing in computer microscopy: selecting the optimal focus algorithm. Microsc Res Tech 65:139–149PubMedGoogle Scholar
  86. 86.
    Firestone L, Cook K, Culp K, Talsania N, Preston Jr K (1991) Comparison of autofocus methods for automated microscopy. Cytometry 12:195–206PubMedGoogle Scholar
  87. 87.
    Bravo-Zanoguera M, von Massenbach B, Kellner AL, Price JH (1998) High-performance autofocus circuit for biological microscopy. Rev Sci Instrum 69:3966–3977 Google Scholar
  88. 88.
    Langehanenberg P, Kemper B, von Bally G (2007) Autofocus algorithms for digital-holographic microscopy. SPIE Proc 6633:66330EGoogle Scholar
  89. 89.
    Elsässer HP, Lehr U, Kern HF (1992) Establishment and characterisation of two cell lines with different grade of differentiation derived from one primary human pancreatic adenocarcinoma. Virchows Arch B 61(1):295–306PubMedGoogle Scholar
  90. 90.
    Bettenworth D, Lenz P, Krausewitz P, Brückner M, Ketelhut S, Domagk D, Kemper B (2014) Quantitative stain-free and continuous multimodal monitoring of wound healing in vitro with digital holographic microscopy. PLoS One 9(9):07317Google Scholar
  91. 91.
    Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) Cell profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100PubMedPubMedCentralGoogle Scholar
  92. 92.
    Popescu G, Park Y, Lue N, Best-Popescu C, Deflores L, Dasari RR, Feld MS, Badizadegan K (2008) Optical imaging of cell mass and growth dynamics. Am J Physiol Cell Physiol 295(2):C538–C544PubMedPubMedCentralGoogle Scholar
  93. 93.
    Rappaz B, Canno E, Colomb T, Kühn J, Depeursinge C, Simanis V, Magistretti PJ, Marquet P (2009) Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy. J Biomed Opt 14(3):034049PubMedGoogle Scholar
  94. 94.
    Zangle TA, Teitell MA (2014) Live-cell mass profiling: an emerging approach in quantitative biophysics. Nat Methods 11(12):1221–1228PubMedPubMedCentralGoogle Scholar
  95. 95.
    Barer R (1952) Interference microscopy and mass determination. Nature 169:366–367PubMedGoogle Scholar
  96. 96.
    Kosmeier S, Kemper B, Langenhanenberg P, Bredebusch I, Schnekenburger J, Bauwens A, von Bally G (2008) Determination of the integral refractive index of cells in suspension by digital holographic phase contrast microscopy. SPIE Proc 6991:699110Google Scholar
  97. 97.
    Kemper B, Bauwens A, Vollmer A, Ketelhut S, Langenhanenberg P, Muthing J, Karch H, von Bally G (2010) Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy. J Biomed Opt 15(3):036009PubMedGoogle Scholar
  98. 98.
    Sridharan S, Mir M, Popescu G (2011) Simultaneous optical measurements of cell motility and growth. Biomed Opt Express 2(10):2815–2820PubMedPubMedCentralGoogle Scholar
  99. 99.
    Liu PY, Chin LK, Ser W, Chen HF, Hsieh CM, Lee CH, Sung KB, Avi TC, Yap PH, Liedberg B, Wang K, Bourouina T, Leprince-Wang Y (2016) Cell refractive index for cell biology and disease diagnosis: past, present and future. Lab Chip 16(4):634–644PubMedGoogle Scholar
  100. 100.
    Ashkin A (1997) Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci U S A 94:4853–4860PubMedPubMedCentralGoogle Scholar
  101. 101.
    Guck J, Ananthakrishnan R, Moon TJ, Cunningham CC, Käs J (2000) Optical deformability of soft biological dielectrics. Phys Rev Lett 84(23):5451PubMedGoogle Scholar
  102. 102.
    Rappaz B, Marquet P, Cuche E, Emery Y, Depeursigne C, Magistretti PJ (2005) Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Opt Express 13(23):9361–9373PubMedGoogle Scholar
  103. 103.
    Kemmler M, Fratz M, Giel DM, Saum N, Brandenburg A, Hoffmann C (2007) Noninvasive time-dependent cytometry monitoring by digital holography. J Biomed Opt 12(6):64002Google Scholar
  104. 104.
    Björk A (1996) Numerical methods for least squares problems. SIAM, PhiladelphiaGoogle Scholar
  105. 105.
    Kemper B, Dartmann S, Schlichthaber F, Vollmer A, Ketelhut S, von Bally G (2012) Self interference digital holographic microscopy for live cell imaging. SPIE Proc:842709Google Scholar
  106. 106.
    Rosner M, Schipany K, Hengstschläger M (2013) Merging high-quality biochemical fractionation with a refined flow cytometry approach to monitor nucleocytoplasmic protein expression throughout the unperturbed mammalian cell cycle. Nat Protoc 8(3):602–626PubMedGoogle Scholar
  107. 107.
    Vandelaer M, Thiry M, Goessens G (1996) Isolation of nucleoli from ELT cells: a quick new method that preserves morphological integrity and high transcriptional activity. Exp Cell Res 228(1):125–131PubMedGoogle Scholar
  108. 108.
    Chalut KJ, Ekpenyong AE, Clegg WL, Melhuish IC, Guck J (2012) Quantifying cellular differentiation by physical phenotype using digital holographic microscopy. Integr Biol 4(3):280–284Google Scholar
  109. 109.
    Ekpenyong AE, Man SM, Achouri S, Bryant CE, Guck J, Chalut KJ (2013) Bacterial infection of macrophages induces decrease in refractive index. J Biophotonics 6(5):393–397PubMedGoogle Scholar
  110. 110.
    Schürmann M, Scholze J, Müller P, Guck J, Chan CJ (2016) Cell nuclei have lower refractive index and mass density than cytoplasm. J Biophotonics 9(10):1068–1076PubMedGoogle Scholar
  111. 111.
    Cotte Y, Toy F, Jourdain P, Pavillon N, Boss D, Magistretti P, Marquet P, Depeursinge C (2013) Marker-free phase nanoscopy. Nat Photonics 7(2):113–117Google Scholar
  112. 112.
    Kuś A, Dudek M, Kemper B, Kuiawinski M, Vollmer A (2014) Tomographic phase microscopy of living three-dimensional cell cultures. J Biomed Opt 19(4):046009PubMedGoogle Scholar
  113. 113.
    Kemper B, Klokkers J, Przbilla S, Vollmer A, Ketelhut S, von Bally G, Pavenstädt HJ, Schlatter E, Edemir B (2012) Tonicity induced changes in volume and refractive index of suspended cells quantified with digital holographic microscopy. Photonics Lett Poland 4(2):45–47Google Scholar
  114. 114.
    Przibilla S, Dartmann S, Vollmer A, Ketelhut S, Greve B, von Bally G, Kemper B (2012) Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes. J Biomed Opt 17(9):097001Google Scholar
  115. 115.
    Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89(1):193–277PubMedGoogle Scholar
  116. 116.
    Rappaz B, Charrière F, Depeursinge C, Magistretti PJ, Marquet P (2008) Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium. Opt Lett 33(7):744–746PubMedGoogle Scholar
  117. 117.
    Debailleul M, Simon B, Georges V, Haeberle O, Lauer V (2008) Holographic microscopy and diffractive microtomography of transparent samples. Measur Sci Technol 19(7):074009Google Scholar
  118. 118.
    Schwickert A, Weghake E, Brüggemann K, Engbers A, Brinkmann BF, Kemper B, Seggewiß J, Stock C, Ebnet K, Kiesel L, Riethmüller C, Götte M (2015) microRNA miR-142-3p inhibits breast cancer cell invasiveness by synchronous targeting of WASL, integrin alpha V, and additional cytoskeletal elements. PLoS One 10(12):e0143993PubMedPubMedCentralGoogle Scholar
  119. 119.
    Eggers JC, Martino V, Reinbold R, Schäfer SD, Kiesel L, Starzinski-Powitz A, Schüring AN, Kemper B, Greve B, Götte M (2016) microRNA miR-200b affects proliferation, invasiveness and stemness of endometriotic cells by targeting ZEB1, ZEB2 and KLF4. Reprod Biomed Online 32(4):434–445PubMedGoogle Scholar
  120. 120.
    Greve B, Sheihk-Mounessi F, Kemper B, Ernst I, Götte M, Eich HT (2012) Survivin, a target to modulate the radiosensitivity of Ewing’s sarcoma. Strahlenther Onkol 188(11):1038–1047PubMedGoogle Scholar
  121. 121.
    Kunsmann L, Rüter C, Bauwens A, Greune L, Glüder M, Kemper B, Fruth A, Wai SN, He X, Lloubes R, Schmidt MA, Dobrindt U, Mellmann A, Karch H, Bielaszewska M (2015) Virulence from vesicles: Novel mechanisms of host cell injury by Escherichia coli O104:H4 outbreak strain. Sci Rep 5:13252PubMedPubMedCentralGoogle Scholar
  122. 122.
    Farcal L, Torres Andón F, Di Christo L, Rotoli BM, Bussolati O, Bergamaschi E, Mech A, Hartmann NB, Rasmussen K, Riego-Sintes J, Ponti J, Kinsner-Ovaskainen A, Rossi F, Oomen A, Bos P, Chen R, Bai R, Chen C, Rocks L, Fulton N, Ross B, Hutchison G, Tran L, Mues S, Ossig R, Schnekenburger J, Campagnolo L, Vecchione L, Pietroiusti A, Fadeel B (2015) Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: first steps towards an intelligent testing strategy. PLoS One 10(5):e0127174PubMedPubMedCentralGoogle Scholar
  123. 123.
    Mues S, Antunovic J, Ketelhut S, Kemper B, Schnekenburger J (2016) Novel optical approaches for label-free quantification of nano-cytotoxic effects. SPIE Proc 97190:97190JGoogle Scholar
  124. 124.
    Dubois F, Joannes L, Legros JC (1999) Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence. Appl Optics 38(34):7085–7094Google Scholar
  125. 125.
    Kemper B, Stürwald S, Remmersmann C, Langenhanekamp P, von Bally G (2008) Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces. Opt Lasers Eng 46:499–507Google Scholar
  126. 126.
    Langehanenberg P, von Bally G, Kemper B (2010) Application of partial coherent light in live cell imaging with digital holographic microscopy. J Mod Opt 57:709–717Google Scholar
  127. 127.
    Girshovitz P, Shaked NT (2013) Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy. Opt Express 21(5):5701–5714PubMedGoogle Scholar
  128. 128.
    Singh AK, Faridian A, Gao P, Pedrini G, Osten W (2014) Quantitative phase imaging using a deep UV LED source. Opt Lett 39(12):3468–3471PubMedGoogle Scholar
  129. 129.
    Dohet-Eraly J, Yourassowsky C, Mallahi AE, Dubois F (2016) Quantitative assessment of noise reduction with partial spatial coherence illumination in digital holographic microscopy. Opt Lett 41(1):111–114PubMedGoogle Scholar
  130. 130.
    Kühn J, Charrière F, Colomb T, Cuche E, Montfort F, Emery Y, Marquet P, Depeursinge C (2008) Axial sub-nanometer accuracy in digital holographic microscopy. Measur Sci Technol 19:074007Google Scholar
  131. 131.
    Kosmeier S, Langenhanekamp P, Przbilla S, von Bally G, Kemper B (2010) Multi-wavelength digital holographic microscopy for high resolution inspection of surfaces and imaging of phase specimen. SPIE Proc 7718:77180TGoogle Scholar
  132. 132.
    Kosmeier S, Langenhanenberg P, von Bally G, Kemper B (2012) Reduction of parasitic interferences in digital holographic microscopy by numerically decreased coherence length. Appl Phys B 106(1):107–115Google Scholar
  133. 133.
    Choi Y, Yang TD, Lee KJ, Choi W (2011) Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination. Opt Lett 36(13):2465–2467PubMedGoogle Scholar
  134. 134.
    Kemper B, Kosmeier S, Langenhanenberg P, Przibilla S, Remmersmann C, Stürwald S, von Bally G (2009) Application of 3D tracking, LED illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy. SPIE Proc 7184:71840RGoogle Scholar
  135. 135.
    Miccio L, Finizio A, Puglisi R, Balduzzi D, Galli A, Ferraro P (2011) Dynamic DIC by digital holography microscopy for enhancing phase-contrast visualization. Biomed Opt Express 2(2):331–344PubMedPubMedCentralGoogle Scholar
  136. 136.
    Girshovitz P, Shaked NT (2012) Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization. Biomed Opt Express 3(8):1757–1773PubMedPubMedCentralGoogle Scholar
  137. 137.
    Liu R, Dey DK, Boss D, Marquet P, Javidi B (2011) Recognition and classification of red blood cells using digital holographic microscopy and data clustering with discriminant analysis. J Opt Soc Am A 28(6):1204–1210Google Scholar
  138. 138.
    Moon I, Javidi B, Yi F, Boss D, Marquet P (2012) Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells. Opt Express 20(9):10295–10309PubMedGoogle Scholar
  139. 139.
    Yi F, Moon I, Javidi B, Boss D, Marquet PP (2013) Automated segmentation of multiple red blood cells with digital holographic microscopy. J Biomed Opt 18(2):026006Google Scholar
  140. 140.
    Nguyen TH, Sridharan S, Marcias V, Balla AK, Do MN, Popescu G (2015) Prostate cancer diagnosis using quantitative phase imaging and machine learning algorithms. SPIE Proc 9336:933619Google Scholar
  141. 141.
    Charrière F, Marian A, Montfort F, Kuehn J, Colomb T, Cuche E, Marquet P, Depeursinge C (2006) Cell refractive index tomography by digital holographic microscopy. Opt Lett 31(2):178–180PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • B. Kemper
    • 1
    Email author
  • A. Bauwens
    • 2
  • D. Bettenworth
    • 3
  • M. Götte
    • 4
  • B. Greve
    • 5
  • L. Kastl
    • 1
  • S. Ketelhut
    • 1
  • P. Lenz
    • 6
    • 8
  • S. Mues
    • 1
  • J. Schnekenburger
    • 1
  • A. Vollmer
    • 7
  1. 1.Biomedical Technology CenterUniversity of MuensterMünsterGermany
  2. 2.Institute of HygieneUniversity Hospital MuensterMünsterGermany
  3. 3.Department of Medicine BUniversity of MuensterMünsterGermany
  4. 4.Department of Gynecology and ObstetricsUniversity Hospital MuensterMünsterGermany
  5. 5.Department of Radiotherapy – RadiooncologyUniversity Hospital MuensterMünsterGermany
  6. 6.Department of Medicine BUniversity Hospital MuensterMünsterGermany
  7. 7.Center for Biomedical Optics and PhotonicsUniversity of MuensterMünsterGermany
  8. 8.Institute of Palliative CareUniversity Hospital MuensterMünsterGermany

Personalised recommendations