Trends in Electrochemical Sensing of Blood Gases

  • Bastiaan van der Weerd
  • Rudolf Bierl
  • Frank-Michael MatysikEmail author
Part of the Bioanalytical Reviews book series (BIOREV, volume 6)


The monitoring of partial pressures of the blood gases carbon dioxide (pCO2) and oxygen (pO2) is of great importance in clinical diagnostics. The measure of pCO2 and pO2 provides essential information about the patient’s metabolism, gas exchange, ventilation, and acid–base homeostasis. The conventional electrochemical methods for clinical blood gas analysis are based on the potentiometric Severinghaus sensor for carbon dioxide and the amperometric Clark sensor for oxygen. These techniques are well established and are only shortly discussed in this overview. However, in recent years a variety of modifications of these classical sensor concepts and new approaches of electrochemical sensing of pCO2 and pO2 have been introduced. This review summarizes recent developments in this field and discusses the potential for future applications in clinical blood gas analysis.


Blood gas analysis Clinical analysis CO2 sensor Electrochemical sensor Noninvasive blood gas sensor O2 sensor 



Arterial blood gas analysis


Anodically grown iridium oxide film


Acute respiratory distress syndrome


Arterialized capillary blood gas analysis


Extracorporeal membrane oxygenation




Ion-selective electrode


Ion-selective field-effect transistor


Liquid ion exchanger


Microelectromechanical systems


Arterial partial pressure of carbon dioxide


Arterial partial pressure of oxygen


Polycrystalline boron-doped diamond


Partial pressure of carbon dioxide




End-tidal partial pressure of carbon dioxide


Partial pressure of oxygen


Transcutaneously determined partial pressure of carbon dioxide


Transcutaneously determined partial pressure of oxygen


Venous blood gas analysis


Time to approach 90%/95% of the steady-state signal


  1. 1.
    Hieronymi U, Kramme R, Kronberg H (2011) Respiratory monitoring and pulse oximetry. In: Kramme R, Hoffmann K-P, Pozos RS (eds) Springer handbook of medical technology. Springer, Berlin-Heidelberg, pp 973–984Google Scholar
  2. 2.
    Crocetti J, Diaz-Abad M, Krachman SL (2010) Blood gas sampling. In: Criner GJ, Barnette RE, D’Alonzo GE (eds) Critical care study guide, 2nd edn. Springer, New York, pp 38–50Google Scholar
  3. 3.
    Cristalli C, Manzoni A (1999) Basics of blood gas instrumentation. In: Bronzino JD (ed) The biomedical engineering handbook, 2nd edn. Boca Raton, CRCGoogle Scholar
  4. 4.
    Huttmann SE, Windisch W, Storre JH (2014) Techniques for the measurement and monitoring of carbon dioxide in the blood. Ann ATS 11(4):645–652CrossRefGoogle Scholar
  5. 5.
    Hogetveit JO, Kristiansen F, Pedersen TH (2006) Development of an instrument to indirectly monitor arterial pCO2 during cardiopulmonary bypass. Perfusion 21:13–19CrossRefGoogle Scholar
  6. 6.
    Hogetveit JO, Kristiansen F, Roislien J (2009) A novel method for indirectly monitoring arterial pO2 during cardiopulmonary bypass. J Med Eng Technol 33(7):567–574CrossRefGoogle Scholar
  7. 7.
    Zaugg M, Lucchinetti E, Zalunardo MP, Zumstein S, Spahn DR, Pasch T, Zollinger A (1998) Substantial changes in arterial blood gases during thoracoscopic surgery can be missed by conventional intermittent laboratory blood gas analyses. Anesth Analg 87:647–653Google Scholar
  8. 8.
    Ganter M, Zollinger A (2003) Continuous intravascular blood gas monitoring: development, current techniques, and clinical use of a commercial device. Brit J Anaesth 91(3):397–407CrossRefGoogle Scholar
  9. 9.
    Rosner V, Hannhart B, Chabot F, Polu JM (1999) Validity of transcutaneous oxygen/carbon dioxide pressure measurement in the monitoring of mechanical ventilation in stable chronic respiratory failure. Eur Respir J 13:1044–1047CrossRefGoogle Scholar
  10. 10.
    Sanders MH, Costantino JP, Strollo PJ, Coates JA (1994) Accuracy of end-tidal and transcutaneous pCO2 monitoring during sleep. Chest 106(2):472–483CrossRefGoogle Scholar
  11. 11.
    Stücker M, Memmel U, Altmeyer P (2000) Transkutane Sauerstoffpartialdruck- und Kohlendioxidpartialdruckmessung – Verfahrenstechnik und Anwendungsgebiete. Phlebologie 29:81–91Google Scholar
  12. 12.
    Restrepo RD, Hirst KR, Wittnebel L, Wettstein R (2012) AARC Clinical practice guideline: transcutaneous monitoring of carbon dioxide and oxygen: 2012. Resp Care 57(11):1955–1962CrossRefGoogle Scholar
  13. 13.
    Hinkelbein J, Floss F, Denz C, Krieter H (2008) Accuracy and precision of three different methods to determine pCO2 (paCO2 vs. petCO2 vs. ptcCO2) during interhospital ground transport of critically ill and ventilated adults. J Trauma 65(1):10–18CrossRefGoogle Scholar
  14. 14.
    Müller T, Lubnow M, Bein T, Philipp A, Pfeifer M (2009) Extrakorporale Lungenunterstützungsverfahren beim ARDS des Erwachsenen: eine Standortbestimmung. Intensivmed 46:109–119CrossRefGoogle Scholar
  15. 15.
    D’Orazio P, Meyerhoff ME (2008) Electrochemistry and chemical sensors. In: Sawyer BG (ed) Fundamentals of clinical chemistry, 6th edn. Saunders, Missouri, pp 84–101Google Scholar
  16. 16.
    Clark LC (1956) Monitor and control of blood and tissue oxygen tension. ASAIO Trans 2(1):41–48Google Scholar
  17. 17.
    Linek V (1988) Measurement of oxygen by membrane-covered probes: guidelines for applications in chemical and biochemical engineering. Ellis Horwood, Chichester; Halsted, New YorkGoogle Scholar
  18. 18.
    Stow RW, Randall BF (1954) Electrical measurement of pCO2 of blood. Am J Physiol 179:678–681Google Scholar
  19. 19.
    Severinghaus JW, Bradley AF (1958) Electrodes for blood pO2 and pCO2 determination. J Apply Phys 13(3):515–520Google Scholar
  20. 20.
    Lewenstam A (2007) Clinical analysis of blood gases and electrolytes by ion-selective sensors. In: Alegret S, Merkoci A (ed) Compr Anal Chem, vol 49. Elsevier, Oxford, pp 5–24Google Scholar
  21. 21.
    Zosel J, Oelßner W, Decker M, Gerlach G, Guth U (2011) The measurement of dissolved and gaseous carbon dioxide concentration. Meas Sci Technol 22(072001):1–45Google Scholar
  22. 22.
    Hutton L, Newton ME, Unwin PR, Macpherson JV (2009) Amperometric oxygen sensor based on a platinum nanoparticle-modified polycrystalline boron doped diamond disk electrode. Anal Chem 81(3):1023–1032CrossRefGoogle Scholar
  23. 23.
    Preidel W, Rao JR, Mund K, Schunck O, David E (1995) A new principle for an electrochemical oxygen sensor. Sens Actuators B 28:71–74CrossRefGoogle Scholar
  24. 24.
    Koley G, Liu J, Nomani MW, Yim M, Wen X, Hsia T-Y (2009) Miniaturized implantable pressure and oxygen sensors based on polydimethylsiloxane thin film. Mater Sci Eng C 29:685–690CrossRefGoogle Scholar
  25. 25.
    Kudo H, Iguchi S, Yamada T, kawase T, Saito H, Otsuka K, Mitsubayashi K (2007) A flexible transcutaneous oxygen sensor using polymer membranes. Biomed Microdevices 9:1–6Google Scholar
  26. 26.
    Mitsubayashi K, Wakabayashi Y, Murotomi D, Yamada T, Kawase T, Iwagaki S, Karube I (2003) Wearable and flexible oxygen sensor for transcutaneous oxygen monitoring. Sens Actuators B 95:373–377CrossRefGoogle Scholar
  27. 27.
    Iguchi S, Mitsubayashi K, Uehara T, Ogawa M (2005) A wearable oxygen sensor for transcutaneous blood gas monitoring at the conjunctiva. Sens Actuators B 108:733–737CrossRefGoogle Scholar
  28. 28.
    Beyenal H, Davis CC, Lewandowski Z (2004) An improved Severinghaus-type carbon dioxide microelectrode for use in biofilms. Sens Actuators b 97:202–210CrossRefGoogle Scholar
  29. 29.
    Lewandowski Z, Beyenal H (2003) Use of microsensors to study biofilms. In: Lens P, O’Flaherty V, Moran AP, Stoodley P, Mahony T (eds) Biofilms in medicine, industry and environmental biotechnology. IWA, London, pp 375–412Google Scholar
  30. 30.
    Hanstein S, de Beer D, Felle HH (2001) Miniaturised carbon dioxide sensor designed for measurements within plant leaves. Sens Actuators B 81:107–114CrossRefGoogle Scholar
  31. 31.
    Bezbaruah AN, Zhang TC (2002) Fabrication of anodically electrodeposited iridium oxide film pH microelectrodes for microenvironmental studies. Anal Chem 74:5726–5733CrossRefGoogle Scholar
  32. 32.
    van Kempen LHJ, Kreuzer F (1975) The CO2 conductivity electrode, a fast-responding CO2 microelectrode. Respir Physiol 24(1):89–106CrossRefGoogle Scholar
  33. 33.
    Mirtaheri P, Grimnes S, Martinsen OG, Tonnessen TI (2004) A new biomedical sensor for measuring pCO2. Physiol Meas 25:421–436CrossRefGoogle Scholar
  34. 34.
    Mirtaheri P, Omtveit T, Klotzbuecher T, Grimnes S, Martinsen OG, Tonnessen TI (2004) Miniaturization of a biomedical gas sensor. Physiol Meas 25:1511–1522CrossRefGoogle Scholar
  35. 35.
    Zosel J, Wex K, Gambert R, Oeßner W (2004) Kohlendioxidsensor. DE 10 2004 058 135 A1, Dec 2004Google Scholar
  36. 36.
    Lee I, Akbar SA (2014) Potentiometric carbon dioxide sensor based on thin Li3PO4 electrolyte and Li2CO3 sensing electrode. Ionics 20:563–569CrossRefGoogle Scholar
  37. 37.
    Wiegärtner S, Kita J, Hagen G, Schmaus C, Kießig A, Glaser E, Bolz A, Moos R (2014) Development and application of a fast solid-state potentiometric CO2-Sensor in thick-film technology. Procedia Eng 87:1031–1034CrossRefGoogle Scholar
  38. 38.
    Shin JH, Lee JS, Choi SH, Lee DK, Nam H, Cha GS (2000) A planar pCO2 sensor with enhanced electrochemical properties. Anal Chem 72(18):4468–4473CrossRefGoogle Scholar
  39. 39.
    Ekwinska MA, Jaroszewicz B, Domanski K, Grabiec P, Zaborowski M, Tomaszewski D, Palko T, Przytulski J, Lukaski W, Dawgul M, Pijanowska D (2012) A transcutaneous blood capnometry sensor head based in a back-side contacted ISFET. In: Jablonski R, Brezina T (eds) Mechatronics. Springer, Berlin-Heidelberg, pp 607–614Google Scholar
  40. 40.
    Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE T Bio-Med Eng 17(1):70–71CrossRefGoogle Scholar
  41. 41.
    Suzuki H, Hirakawa T, Sasaki S, Karube I (2000) An integrated module for sensing pO2, pCO2 and pH. Anal Chim Acta 405:57–65CrossRefGoogle Scholar
  42. 42.
    Tsukada K, Miyahara Y, Shibata Y, Miyagi H (1990) An integrated chemical sensor with multiple ion and gas sensors. Sens Actuators B 2:291–295CrossRefGoogle Scholar
  43. 43.
    Shoji S, Esashi M (1992) micro flow cell for blood gas analysis realizing very small sample volume. Sens Actuators B 8:205–208CrossRefGoogle Scholar
  44. 44.
    Arquint P, van den Berg A, van der Schoot BH, de Rooij NF, Bühler H, Morf WE, Dürselen LFJ (1993) Integrated blood-gas sensor for pO2, pCO2 and pH. Sens Actuators B 13:340–344CrossRefGoogle Scholar
  45. 45.
    Fasching R, Kohl F, Urban G (2003) A miniaturized amperometric CO2 sensor based on dissociation of copper complexes. Sens Actuators B 93:197–204CrossRefGoogle Scholar
  46. 46.
    Xie X, Bakker E (2013) Non-Severinghaus potentiometric dissolved CO2 sensor with improved characteristics. Anal Chem 85:1332–1336CrossRefGoogle Scholar
  47. 47.
    Guth U, Vonau W, Zosel J (2009) Recent developments in electrochemical sensor application and technology – a review. Meas Sci Technol 20(042002):1–14Google Scholar
  48. 48.
    Anjos TG, Hahn EW (2008) The development of a membrane-covered microelectrode array gas sensor for oxygen and carbon dioxide measurement. Sens Actuators B 135:224–229CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Bastiaan van der Weerd
    • 1
  • Rudolf Bierl
    • 1
  • Frank-Michael Matysik
    • 1
    Email author
  1. 1.Institute of Analytical Chemistry, Chemo- and Biosensors, University of RegensburgRegensburgGermany

Personalised recommendations