WhatsOnWeb: Using Graph Drawing to Search the Web

  • Emilio Di Giacomo
  • Walter Didimo
  • Luca Grilli
  • Giuseppe Liotta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)


One of the most challenging issues in mining information from the World Wide Web is the design of systems that can present the data to the end user by clustering them into meaningful semantic categories. We envision that the analysis of the results of a Web search can significantly take advantage of advanced graph drawing techniques. In this paper we strengthen our point by describing the visual functionalities of WhatsOnWeb, a meta search clustering engine explicitly designed to make it possible for the user to browse the Web by means of drawings of graphs whose nodes represent clusters of coherent data and whose edges describe semantic relationships between pairs of clusters. A prototype of WhatsOnWeb is available at


Relevance Score Graph Drawing Super Node Cluster Hierarchy Compaction Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bertolazzi, P., Battista, G.D., Didimo, W.: Computing orthogonal drawings with the minimum number of bends. IEEE Trans. on Comp. 49(8), 826–840 (2000)CrossRefGoogle Scholar
  2. 2.
    Brinkmeier, M.: Communities in graphs. In: Böhme, T., Heyer, G., Unger, H. (eds.) IICS 2003. LNCS, vol. 2877, pp. 20–35. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Di Battista, G., Didimo, W., Patrignani, M., Pizzonia, M.: Orthogonal and quasi-upward drawings with vertices of prescribed size. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 297–310. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)zbMATHGoogle Scholar
  5. 5.
    Di Giacomo, E., Didimo, W., Grilli, L., Liotta, G.: A topology-driven approach to the design of web meta-search clustering engines. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 106–116. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Ferragina, P., Gulli, A.: The anatomy of a clustering engine for web-page snippet. In: The Fourth IEEE International Conference on Data Mining (ICDM 2004) (2004)Google Scholar
  7. 7.
    Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Information Processing Letters 76, 175–181 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69 (2004)Google Scholar
  9. 9.
    Salton, G.: Automatic Text Processing. The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley, Reading (1989)Google Scholar
  10. 10.
    Zamir, O., Etzioni, O.: Web document clustering: A feasibility demonstration. In: Research and Development in Information Retrieval, pp. 46–54 (1998)Google Scholar
  11. 11.
    Zamir, O., Etzioni, O.: Grouper: a dynamic clustering interface to web search results. Computer Networks 31(11-16), 1361–1374 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Emilio Di Giacomo
    • 1
  • Walter Didimo
    • 1
  • Luca Grilli
    • 1
  • Giuseppe Liotta
    • 1
  1. 1.Università di PerugiaItaly

Personalised recommendations