Incremental Connector Routing

  • Michael Wybrow
  • Kim Marriott
  • Peter J. Stuckey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)

Abstract

Most diagram editors and graph construction tools provide some form of automatic connector routing, typically providing orthogonal or poly-line connectors. Usually the editor provides an initial automatic route when the connector is created and then modifies this when the connector end-points are moved. None that we know of ensure that the route is of minimal length while avoiding other objects in the diagram. We study the problem of incrementally computing minimal length object-avoiding poly-line connector routings. Our algorithms are surprisingly fast and allow us to recalculate optimal connector routings fast enough to reroute connectors even during direct manipulation of an object’s position, thus giving instant feedback to the diagram author.

References

  1. 1.
    The Omni Group: OmniGraffle Product Page. Web Page (2002), http://www.omnigroup.com/omnigraffle/
  2. 2.
    Larsson, A.: Dia Home Page. Web Page (2002), http://www.gnome.org/projects/dia/
  3. 3.
    Microsoft Corporation: Microsoft Visio Home Page. Web Page (2002), http://office.microsoft.com/visio/
  4. 4.
    Computer Systems Odessa: ConceptDraw Home Page. Web Page (2002), http://www.conceptdraw.com/
  5. 5.
    yWorks: yFiles - Java Graph Layout and Visualization Library. Web Page (2005), www.yworks.com/products/yfiles/
  6. 6.
    AT&T Research: Spline-o-matic library. Web Page (1999), http://www.graphviz.org/Misc/spline-o-matic/
  7. 7.
    Miriyala, K., Hornick, S.W., Tamassia, R.: An incremental approach to aesthetic graph layout. In: Proceedings of the Sixth International Workshop on Computer-Aided Software Engineering, pp. 297–308. IEEE Computer Society, Los Alamitos (1993)CrossRefGoogle Scholar
  8. 8.
    Lee, D.T.: Proximity and reachability in the plane. PhD thesis, Department of Electrical Engineering, University of Illinois, Urbana, IL (1978)Google Scholar
  9. 9.
    Welzl, E.: Constructing the visibility graph for n line segments in O(n 2) time. Information Processing Letters 20, 167–171 (1985)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Asano, T., Asano, T., Guibas, L., Hershberger, J., Imai, H.: Visibility of disjoint polygons. Algorithmica 1, 49–63 (1986)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Overmars, M.H., Welzl, E.: New methods for computing visibility graphs. In: Proceedings of the fourth annual symposium on Computational geometry, pp. 164–171. ACM Press, New York (1988)CrossRefGoogle Scholar
  12. 12.
    Ghosh, S.K., Mount, D.M.: An output-sensitive algorithm for computing visibility. SIAM Journal on Computing 20, 888–910 (1991)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34, 596–615 (1987)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Mitchell, J.S.: Geometric shortest paths and network optimization. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier Science Publishers B.V., Amsterdam (2000)CrossRefGoogle Scholar
  15. 15.
    Rohnert, H.: Shortest paths in the plane with convex polygonal obstacles. Information Processing Letters 23, 71–76 (1986)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ben-Moshe, B., Hall-Holt, O., Katz, M.J., Mitchell, J.S.B.: Computing the visibility graph of points within a polygon. In: SCG 2004: Proceedings of the twentieth annual symposium on Computational geometry, pp. 27–35. ACM Press, New York (2004)CrossRefGoogle Scholar
  17. 17.
    Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Mathematik, 269–271 (1959)Google Scholar
  18. 18.
    Nelson, R.C., Samet, H.: A consistent hierarchical representation for vector data. In: SIGGRAPH 1986: Proceedings of the 13th annual conference on Computer graphics and interactive techniques, pp. 197–206. ACM Press, New York (1986)CrossRefGoogle Scholar
  19. 19.
    Shneiderman, B.: Direct manipulation: A step beyond programming languages. IEEE Computer 16, 57–69 (1983)Google Scholar
  20. 20.
    Woodberry, O.J.: Knowledge engineering a Bayesian network for an ecological risk assessment. Honours thesis, Monash University, CSSE, Australia (2003), http://www.csse.monash.edu.au/hons/projects/2003/Owen.Woodberry/

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michael Wybrow
    • 1
  • Kim Marriott
    • 1
  • Peter J. Stuckey
    • 2
  1. 1.Clayton School of Information TechnologyMonash UniversityClaytonAustralia
  2. 2.NICTA Victoria Laboratory, Dept. of Comp. Science & Soft. Eng.University of MelbourneAustralia

Personalised recommendations