Proper and Planar Drawings of Graphs on Three Layers

  • Matthew Suderman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)

Abstract

A graph is proper k-layer planar, for an integer k≥ 0, if it admits a planar drawing in which the vertices are drawn on k horizontal lines called layers and each edge is drawn as a straight-line segment between end-vertices on adjacent layers. In this paper, we point out errors in an algorithm of Fößmeier and Kaufmann (CIAC, 1997) for recognizing proper 3-layer planar graphs, and then present a new characterization of this set of graphs that is partially based on their algorithm. Using the characterization, we then derive corresponding linear-time algorithms for recognizing and drawing proper 3-layer planar graphs. On the basis of our results, we predict that the approach of Fößmeier and Kaufmann will not easily generalize for drawings on four or more layers and suggest another possible approach along with some of the reasons why it may be more successful.

References

  1. 1.
    Arnborg, S., Proskurowski, A.: Characterization and recognition of partial 3-trees. SIAM Journal of Algebraic and Discrete Methods 7, 305–314 (1986)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  3. 3.
    Cornelsen, S., Schank, T., Wagner, D.: Drawing graphs on two and three lines. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 31–41. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Dujmović, V., Fellows, M.R., Hallett, M.T., Kitching, M., Liotta, G., McCartin, C., Nishimura, N., Ragde, P., Rosamond, F.A., Suderman, M., Whitesides, S., Wood, D.R.: On the parameterized complexity of layered graph drawing. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 488–499. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Eades, P., McKay, B., Wormald, N.: On an edge crossing problem. In: Proceedings of the 9th Australian Computer Science Conference, pp. 327–334. Australian National University (1986)Google Scholar
  6. 6.
    Fößmeier, U., Kaufmann, M.: Nice drawings for planar bipartite graphs. In: Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp. 122–134. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Harary, F., Schwenk, A.: A new crossing number for bipartite graphs. Utilitas Mathematica 1, 203–209 (1972)MATHMathSciNetGoogle Scholar
  8. 8.
    Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM Journal on Computing 21, 927–958 (1992)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs: Methods and Models. LNCS, vol. 2025. Springer, Heidelberg (2001)MATHGoogle Scholar
  10. 10.
    Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, Chichester (1990)MATHGoogle Scholar
  11. 11.
    Matousek, J., Thomas, R.: Algorithms finding tree-decompositions of graphs. Journal of Algorithms 12, 1–22 (1991)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Sanders, D.P.: On linear recognition of tree-width at most four. SIAM Journal on Discrete Mathematics 9, 101–117 (1995)CrossRefGoogle Scholar
  13. 13.
    Suderman, M.: Pathwidth and layered drawings of trees. International Journal of Computational Geometry & Applications 14, 203–225 (2004)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Computing 1, 146–160 (1972)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Tomii, N., Kambayashi, Y., Yajima, S.: On planarization algorithms of 2-level graphs. Technical Report EC77-38, Institute of Electronic and Communication Engineers of Japan, IECEJ (1977)Google Scholar
  16. 16.
    Warfield, J.N.: Crossing theory and hierarchy mapping. IEEE Transactions on Systems, Man, and Cybernetics 7, 502–523 (1977)MathSciNetGoogle Scholar
  17. 17.
    Waterman, M.S., Griggs, J.R.: Interval graphs and maps of DNA. Bulletin of Mathematical Biology 48, 189–195 (1986)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Matthew Suderman
    • 1
  1. 1.School of Computer ScienceMcGill University 

Personalised recommendations