No-bend Orthogonal Drawings of Series-Parallel Graphs

(Extended Abstract)
  • Md. Saidur Rahman
  • Noritsugu Egi
  • Takao Nishizeki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)

Abstract

In a no-bend orthogonal drawing of a plane graph, each vertex is drawn as a point and each edge is drawn as a single horizontal or vertical line segment. A planar graph is said to have a no-bend orthogonal drawing if at least one of its plane embeddings has a no-bend orthogonal drawing. Every series-parallel graph is planar. In this paper we give a linear-time algorithm to examine whether a series-parallel graph G of the maximum degree three has a no-bend orthogonal drawing and to find one if G has.

Keywords

Planar Graph Algorithm Graph Drawing Orthogonal Drawing Bend SPQ tree 

References

  1. [BEGKLM04]
    Brandenburg, F., Eppstein, D., Goodrich, M.T., Kobourov, S., Liotta, G., Mutzel, P.: Selected open problems in graph drawings. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 515–539. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. [DLV98]
    Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings. SIAM J. Comput. 27(6), 1764–1811 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. [DT96]
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996)MATHCrossRefMathSciNetGoogle Scholar
  4. [GL99]
    Garg, A., Liotta, G.: Almost bend-optimal planar orthogonal drawings of biconnected degree-3 planar graphs in quadratic time. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 38–48. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. [GT01]
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)MATHCrossRefMathSciNetGoogle Scholar
  6. [NR04]
    Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. World Scientific, Singapore (2004)MATHGoogle Scholar
  7. [REN05]
    Rahman, M.S., Egi, N., Nishizeki, T.: No-bend orthogonal drawings of subdivisions of planar triconnected cubic graphs. IEICE Trans. Inf. & Syst. E88-D(1), 23–30 (2005)Google Scholar
  8. [RN02]
    Rahman, M.S., Nishizeki, T.: Bend-minimum orthogonal drawings of plane 3-graphs. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 367–378. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. [RNN03]
    Rahman, M.S., Naznin, M., Nishizeki, T.: Orthogonal drawings of plane graphs without bends. Journal of Graph Alg. and Appl. 7(4), 335–362 (2003)MATHMathSciNetGoogle Scholar
  10. [RNN99]
    Rahman, M.S., Nakano, S., Nishizeki, T.: A linear algorithm for bend-optimal orthogonal drawings of triconnected cubic plane graphs. Journal of Graph Alg. and Appl. 3(4), 31–62 (1999), http://www.cs.brown.edu/publications/jgaa/ MATHMathSciNetGoogle Scholar
  11. [T87]
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16, 421–444 (1987)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Md. Saidur Rahman
    • 1
  • Noritsugu Egi
    • 2
  • Takao Nishizeki
    • 2
  1. 1.Department of Computer Science and EngineeringBangladesh University of Engineering and Technology (BUET)DhakaBangladesh
  2. 2.Graduate School of Information SciencesTohoku UniversitySendaiJapan

Personalised recommendations