On Extending a Partial Straight-Line Drawing

  • Maurizio Patrignani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)


We investigate the computational complexity of the following problem. Given a planar graph in which some vertices have already been placed in the plane, place the remaining vertices to form a planar straight-line drawing of the whole graph. We show that this extensibility problem, proposed in the 2003 “Selected Open Problems in Graph Drawing” [1], is NP-complete.


  1. 1.
    Brandenburg, F., Eppstein, D., Goodrich, M.T., Kobourov, S., Liotta, G., Mutzel, P.: Selected open problems in graph drawing. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 515–539. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. In: Proc. 20th European Workshop on Computational Geometry (2004)Google Scholar
  3. 3.
    Fary, I.: On straight lines representation of planar graphs. Acta Sci. Math. Szeged 11, 229–233 (1948)MathSciNetGoogle Scholar
  4. 4.
    Freitag, L.A., Plassman, P.E.: Local optimization-based untangling algorithms for quadrilateral meshes. In: Proc. 10th int. Meshing Roundtable, pp. 397–406 (2001)Google Scholar
  5. 5.
    Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Stein, S.K.: Convex maps. Proc. Amer. Math. Soc. 2(3), 464–466 (1951)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Steinitz, E., Rademacher, H.: Vorlesungen über die Theorie der Polyeder. Julius. Springer, Berlin (1934)Google Scholar
  8. 8.
    Tutte, W.T.: How to draw a graph. Proceedings London Mathematical Society 13(52), 743–768 (1963)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen Mathematiker-Vereinigung 46, 26–32 (1936)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Maurizio Patrignani
    • 1
  1. 1.Roma Tre University 

Personalised recommendations