Complexity Results for Three-Dimensional Orthogonal Graph Drawing

(Extended Abstract)
  • Maurizio Patrignani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)

Abstract

We introduce the 3SAT reduction framework which can be used to prove the NP-hardness of finding three-dimensional orthogonal drawings with specific constraints. We use it to show that finding a drawing of a graph whose edges have a fixed shape is NP-hard. Also, it is NP-hard finding a drawing of a graph with nodes at prescribed positions when a maximum of two bends per edge is allowed. We comment on the impact of these results on the two open problems of determining whether a graph always admits a 3D orthogonal drawing with at most two bends per edge and of characterizing orthogonal shapes admitting a drawing without intersections.

References

  1. 1.
    Biedl, T.C.: Heuristics for 3D-orthogonal graph drawings. In: Proc. 4th Twente Workshop on Graphs and Combinatorial Optimization, pp. 41–44 (1995)Google Scholar
  2. 2.
    Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Macmillan, London (1976)Google Scholar
  3. 3.
    Brandenburg, F., Eppstein, D., Goodrich, M.T., Kobourov, S., Liotta, G., Mutzel, P.: Selected open problems in graph drawing. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 515–539. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Closson, M., Gartshore, S., Johansen, J., Wismath, S.K.: Fully dynamic 3-dimensional orthogonal graph drawing. J. of Graph Algorithms and Applications 5(2), 1–34 (2001)MathSciNetGoogle Scholar
  5. 5.
    Demaine, E.D., Mitchell, J.S.B., O’Rourke, J. (eds.): The Open Problems Project, http://cs.smith.edu/~orourke/TOPP/Welcome.html
  6. 6.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)MATHGoogle Scholar
  7. 7.
    Di Battista, G., Liotta, G., Lubiw, A., Whitesides, S.: Orthogonal drawings of cycles in 3d space. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 272–283. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Di Battista, G., Liotta, G., Lubiw, A., Whitesides, S.: Embedding problems for paths with direction constrained edges. Theor. Comp. Sci. 289, 897–917 (2002)MATHCrossRefGoogle Scholar
  9. 9.
    Di Giacomo, E., Liotta, G., Patrignani, M.: A note on 3D orthogonal drawings with direction constrained edges. Inform. Process. Lett. 90, 97–101 (2004)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Eades, P., Stirk, C., Whitesides, S.: The techniques of Kolmogorov and Bardzin for three dimensional orthogonal graph drawings. Inform. Process. Lett. 60, 97–103 (1996)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Eades, P., Symvonis, A., Whitesides, S.: Three dimensional orthogonal graph drawing algorithms. Discrete Applied Math. 103(1-3), 55–87 (2000)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lynn, B.Y.S., Symvonis, A., Wood, D.R.: Refinement of three-dimensional orthogonal graph drawings. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 308–320. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Papakostas, A., Tollis, I.G.: Algorithms for incremental orthogonal graph drawing in three dimensions. J. of Graph Algorithms and Applications 3(4), 81–115 (1999)MATHMathSciNetGoogle Scholar
  14. 14.
    Patrignani, M.: Complexity results for three-dimensional orthogonal graph drawing. Tech. Report RT-DIA-94-2005, Dip. Inf. e Automazione, Univ. Roma Tre (2005), http://dipartimento.dia.uniroma3.it/ricerca/rapporti/rapporti.php
  15. 15.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction, 3rd edn. Springer, Heidelberg (1990)Google Scholar
  16. 16.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Vijayan, G., Wigderson, A.: Rectilinear graphs and their embeddings. SIAM J. Comput. 14, 355–372 (1985)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Wood, D.R.: On higher-dimensional orthogonal graph drawing. In: Harland, J. (ed.) Proc. Computing: the Australasian Theory Symposimum (CATS 1997), vol. 19, pp. 3–8. Australian Computer Science Commission (1997)Google Scholar
  19. 19.
    Wood, D.R.: Lower bounds for the number of bends in three-dimensional orthogonal graph drawings. J. of Graph Algorithms and Applications 7, 33–77 (2003)MATHGoogle Scholar
  20. 20.
    Wood, D.R.: Optimal three-dimensional orthogonal graph drawing in the general position model. Theor. Comp. Sci. 299, 151–178 (2003)MATHCrossRefGoogle Scholar
  21. 21.
    Wood, D.R.: Minimising the number of bends and volume in 3-dimensional orthogonal graph drawings with a diagonal vertex layout. Algorithmica 39, 235–253 (2004)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Maurizio Patrignani
    • 1
  1. 1.Università di Roma TreItaly

Personalised recommendations