Drawing Graphs Using Modular Decomposition

  • Charis Papadopoulos
  • Constantinos Voglis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)

Abstract

In this paper we present an algorithm for drawing an undirected graph G which takes advantage of the structure of the modular decomposition tree of G. Specifically, our algorithm works by traversing the modular decomposition tree of the input graph G on n vertices and m edges, in a bottom-up fashion until it reaches the root of the tree, while at the same time intermediate drawings are computed. In order to achieve aesthetically pleasing results, we use grid and circular placement techniques, and utilize an appropriate modification of a well-known spring embedder algorithm. It turns out, that for some classes of graphs, our algorithm runs in O(n+m) time, while in general, the running time is bounded in terms of the processing time of the spring embedder algorithm. The result is a drawing that reveals the structure of the graph G and preserves certain aesthetic criteria.

References

  1. 1.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  2. 2.
    Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Comput. 27, 132–169 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: GraphML progress report: structural layer proposal. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 501–512. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications (1999)Google Scholar
  5. 5.
    Dahlhaus, E., Gustedt, J., McConnell, R.M.: Efficient and practical algorithms for sequential modular decomposition. J. Algorithms 41, 360–387 (2001)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Eades, P., Feng, Q.W.: Drawing clustered graphs on an orthogonal grid. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 146–157. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  7. 7.
    Eades, P., Feng, Q.W., Lin, X.: Straight-line drawing algorithms for hierarchical graphs and clustered graphs. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 113–128. Springer, Heidelberg (1997)Google Scholar
  8. 8.
    Feng, Q.-W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)Google Scholar
  9. 9.
    Fruchterman, T., Reingold, E.: Graph drawing by force-directed placement. Software-Practice and Experience 21, 1129–1164 (1991)CrossRefGoogle Scholar
  10. 10.
    Gagneur, J., Krause, R., Bouwmeester, T., Casari, G.: Modular decomposition of protein-protein interaction networks. Genome Biology 5, R57 (2004)CrossRefGoogle Scholar
  11. 11.
    Gansner, E.R., North, S.C.: Improved force-directed layouts. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 364–373. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Harel, D., Koren, Y.: Drawing graphs with non-uniform vertices. In: Proc. of Working Conference on Advanced Visual Interfaces (AVI 2002), pp. 157–166. ACM Press, New York (2002)CrossRefGoogle Scholar
  13. 13.
    Huang, M.L., Eades, P.: A fully animated interactive system for clustering and navigating huge graphs. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 374–383. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Li, W., Eades, P., Nikolov, N.: Using spring algorithms to remove node overlapping. In: Proc. Asia Pacific Symp. Information Visualization, APVIS 2005 (2005)Google Scholar
  15. 15.
    McConnell, R.M., Spinrad, J.: Modular decomposition and transitive orientation. Discrete Math. 201, 189–241 (1999)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
  17. 17.
    Walshaw, C.: A multilevel algorithm for force-directed graph drawing. J. Graph Algorithms Appl. 7, 253–285 (2003)MATHMathSciNetGoogle Scholar
  18. 18.
    Wang, X., Miyamoto, I.: Generating customized layouts. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 504–515. Springer, Heidelberg (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Charis Papadopoulos
    • 1
  • Constantinos Voglis
    • 2
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.Department of Computer ScienceUniversity of IoanninaIoanninaGreece

Personalised recommendations