A Mixed-Integer Program for Drawing High-Quality Metro Maps

  • Martin Nöllenburg
  • Alexander Wolff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)

Abstract

In this paper we investigate the problem of drawing metro maps which is defined as follows. Given a planar graph G of maximum degree 8 with its embedding and vertex locations (e.g. the physical location of the tracks and stations of a metro system) and a set \({\mathcal L}\) of paths or cycles in G (e.g. metro lines), draw G and \({\mathcal L}\)nicely. We first specify the niceness of a drawing by listing a number of hard and soft constraints. Then we present a mixed-integer program (MIP) which always finds a drawing that fulfills all hard constraints (if such a drawing exists) and optimizes a weighted sum of costs corresponding to the soft constraints. We also describe some heuristics that speed up the MIP. We have implemented both the MIP and the heuristics. We compare their output to that of previous algorithms for drawing metro maps and to official metro maps drawn by graphic designers.

References

  1. 1.
    Barkowsky, T., Latecki, L.J., Richter, K.-F.: Schematizing maps: Simplification of geographic shape by discrete curve evolution. In: Habel, C., Brauer, W., Freksa, C., Wender, K.F. (eds.) Spatial Cognition 2000. LNCS (LNAI), vol. 1849, p. 41. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Binucci, C., Didimo, W., Liotta, G., Nonato, M.: Orthogonal drawings of graphs with vertex and edge labels. Comp. Geometry: Theory & Appl. 32(2), 71–114 (2005)MATHMathSciNetGoogle Scholar
  3. 3.
    Brandes, U., Eiglsperger, M., Kaufmann, M., Wagner, D.: Sketch-driven orthogonal graph drawing. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 1–11. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Cabello, S., Berg, M.d., Dijk, S.v., Kreveld, M.v., Strijk, T.: Schematization of road networks. In: Proc. 17th Annual Symp. on Computational Geometry (SoCG 2001), pp. 33–39. ACM Press, New York (2001)Google Scholar
  5. 5.
    di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  6. 6.
    Hong, S.-H., Merrick, D., do Nascimento, H.A.D.: The metro map layout problem. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 482–491. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Nöllenburg, M.: Automated drawings of metro maps. Technical Report 2005-25, Universität Karlsruhe (2005), Available at: http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=/ira/2005/25
  8. 8.
    Ovenden, M.: Metro Maps of the World. Capital Transport Publishing (2003)Google Scholar
  9. 9.
    Sandvad, E.S., Grønbæk, K., Sloth, L., Knudsen, J.L.: A metro map metaphor for guided tours on the Web: the Webvise Guided Tour System. In: Proc. 10th Int. World Wide Web Conf (WWW 2001), Hong Kong, pp. 326–333. ACM Press, New York (2001)CrossRefGoogle Scholar
  10. 10.
    Stott, J.M., Rodgers, P.: Metro map layout using multicriteria optimization. In: Proc. 8th Int. Conf. on Information Visualisation (IV 2004), London, pp. 355–362. IEEE, Los Alamitos (2004)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Martin Nöllenburg
    • 1
  • Alexander Wolff
    • 1
  1. 1.Fakultät für InformatikUniversität KarlsruheKarlsruhe

Personalised recommendations