An Experimental Comparison of Fast Algorithms for Drawing General Large Graphs

  • Stefan Hachul
  • Michael Jünger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)


In the last decade several algorithms that generate straight-line drawings of general large graphs have been invented. In this paper we investigate some of these methods that are based on force-directed or algebraic approaches in terms of running time and drawing quality on a big variety of artificial and real-world graphs. Our experiments indicate that there exist significant differences in drawing qualities and running times depending on the classes of tested graphs and algorithms.


  1. 1.
    The AT&T graph collection,
  2. 2.
    Brandenburg, F.J., Himsolt, M., Rohrer, C.: An Experimental Comparison of Force-Directed and Randomized Graph Drawing Methods. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 76–87. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Brandes, U., Wagner, D.: Visone - Analysis and Visualization of Social Networks. In: Graph Drawing Software. Mathematics and Visualization, vol. XII, pp. 321–340. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Davidson, R., Harel, D.: Drawing Graphs Nicely Using Simulated Annealing. ACM Transactions on Graphics 15(4), 301–331 (1996)CrossRefGoogle Scholar
  5. 5.
    Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)MathSciNetGoogle Scholar
  6. 6.
    Frick, A., Ludwig, A., Mehldau, H.: A Fast Adaptive Layout Algorithm for Undirected Graphs. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 388–403. Springer, Heidelberg (1995)Google Scholar
  7. 7.
    Fruchterman, T.M.J., Reingold, E.M.: Graph Drawing by Force-directed Placement. Software–Practice and Experience 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  8. 8.
    Gajer, P., Goodrich, M.T., Kobourov, S.G.: A Multi-dimensional Approach to Force-Directed Layouts of Large Graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 211–221. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Gajer, P., Kobourov, S.G.: GRIP: Graph Drawing with Intelligent Placement. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 222–228. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Hachul, S.: A Potential-Field-Based Multilevel Algorithm for Drawing Large Graphs. PhD thesis, Institut für Informatik, Universität zu Köln, Germany (2005)Google Scholar
  11. 11.
    Hachul, S., Jünger, M.: Drawing Large Graphs with a Potential-Field-Based Multilevel Algorithm (Extended Abstract). In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Harel, D., Koren, Y.: A Fast Multi-scale Method for Drawing Large Graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 183–196. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Harel, D., Koren, Y.: Graph Drawing by High-Dimensional Embedding. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 207–219. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Jünger, M., Klau, G.W., Mutzel, P., Weiskircher, R.: AGD - A Library of Algorithms for Graph Drawing. In: Jünger, M., Mutzel, P. (eds.) Graph Drawing Software. Mathematics and Visualization, vol. XII, pp. 149–172. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Kamada, T., Kawai, S.: An Algorithm for Drawing General Undirected Graphs. Information Processing Letters 31, 7–15 (1989)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Koren, Y., Carmel, L., Harel, D.: Drawing Huge Graphs by Algebraic Multigrid Optimization. Multiscale Modeling and Simulation 1(4), 645–673 (2003)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
  18. 18.
    Quigley, A., Eades, P.: FADE: Graph Drawing, Clustering, and Visual Abstraction. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 197–210. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Tunkelang, D.: JIGGLE: Java Interactive Graph Layout Environment. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 413–422. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Walshaw’s, C.: Graph collection,
  21. 21.
    Walshaw, C.: A Multilevel Algorithm for Force-Directed Graph Drawing. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 171–182. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Yusufov’s, R.: Implementation of GRIP,

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stefan Hachul
    • 1
  • Michael Jünger
    • 1
  1. 1.Institut für InformatikUniversität zu KölnKölnGermany

Personalised recommendations