Delta-Confluent Drawings

  • David Eppstein
  • Michael T. Goodrich
  • Jeremy Yu Meng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)


We generalize the tree-confluent graphs to a broader class of graphs called Δ-confluent graphs. This class of graphs and distance-hereditary graphs, a well-known class of graphs, coincide. Some results about the visualization of Δ-confluent graphs are also given.


  1. 1.
    Aziza, S., Biedl, T.: Hexagonal grid drawings: Algorithms and lower bounds. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 18–24. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bandelt, H., Mulder, H.M.: Distance-hereditrary graphs. J. Combin. Theory Ser. B 41, 182–208 (1986)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous graph embedding. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 243–255. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Brent, R.P., Kung, H.T.: On the area of binary tree layouts. Inform. Process. Lett. 11, 521–534 (1980)CrossRefGoogle Scholar
  5. 5.
    Bridgeman, S., Garg, A., Tamassia, R.: A graph drawing and translation service on the WWW. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 45–52. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Chan, T.M., Goodrich, M.T., Kosaraju, S.R., Tamassia, R.: Optimizing area and aspect ratio in straight-line orthogonal tree drawings. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 63–75. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Choi, S.Y.: Orthogonal straight line drawing of trees. M.Sc. thesis, Dept. Comput. Sci., Univ. Brown, Providence, RI (1999)Google Scholar
  8. 8.
    Crescenzi, P., Di Battista, G., Piperno, A.: A note on optimal area algorithms for upward drawings of binary trees. Comput. Geom. Theory Appl. 2, 187–200 (1992)MATHGoogle Scholar
  9. 9.
    Damiand, G., Habib, M., Paul, C.: A simple paradigm for graph recognition: Application to cographs and distance hereditary graphs. Theor. Comput. Sci. 263(1-2), 99–111 (2001)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dickerson, M.T., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawing: Visualizing nonplanar diagrams in a planar way. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 1–12. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Duncan, C.A., Eppstein, D., Kobourov, S.G.: The geometric thickness of low degree graphs. In: 20th Annual ACM-SIAM Symposium on Computational Geometry (SCG 2004), pp. 340–346 (2004)Google Scholar
  12. 12.
    Eades, P., Lin, T., Lin, X.: Two tree drawing conventions. Internat. J. Comput. Geom. Appl. 3, 133–153 (1993)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Eades, P.D.: Drawing free trees. Bulletin of the Institute for Combinatorics and its Applications 5, 10–36 (1992)MATHMathSciNetGoogle Scholar
  14. 14.
    Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 184–194. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Erten, C., Kobourov, S.G.: Simultaneous embedding of a planar graph and its dual on the grid. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 575–587. Springer, Heidelberg (2002)Google Scholar
  16. 16.
    Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 195–205. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)MATHGoogle Scholar
  18. 18.
    Garg, A., Goodrich, M.T., Tamassia, R.: Area-efficient upward tree drawings. In: Proc. 9th Annu. ACM Sympos. Comput. Geom., pp. 359–368 (1993)Google Scholar
  19. 19.
    Gregori, A.: Unit length embedding of binary trees on a square grid. Inform. Process. Lett. 31, 167–172 (1989)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hammer, P., Maffray, F.: Completely separable graphs. Discrete Appl. Math. 27, 85–99 (1990)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hui, P., Schaefer, M., Štefankovič, D.: Train tracks and confluent drawings. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 318–328. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Idicula, P.J.: Drawing trees in grids. Master’s thesis, Department of Computer Science, University of Auckland (1990)Google Scholar
  23. 23.
    Kant, G.: Hexagonal grid drawings. In: Proc. 18th Internat. Workshop Graph-Theoret. Concepts Comput. Sci. (1992)Google Scholar
  24. 24.
    Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: Proc. 21st Annu. IEEE Sympos. Found. Comput. Sci., pp. 270–281 (1980)Google Scholar
  25. 25.
    Leiserson, C.E.: Area-efficient graph layouts (for VLSI). ACM Doctoral Dissertation Award Series. MIT Press, Cambridge (1983)Google Scholar
  26. 26.
    Metaxas, P.T., Pantziou, G.E., Symvonis, A.: Parallel h-v drawings of binary trees. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS, vol. 834, pp. 487–495. Springer, Heidelberg (1994)Google Scholar
  27. 27.
    Reingold, E., Tilford, J.: Tidier drawing of trees. IEEE Trans. Softw. Eng. SE-7(2), 223–228 (1981)CrossRefGoogle Scholar
  28. 28.
    Supowit, K.J., Reingold, E.M.: The complexity of drawing trees nicely. Acta Inform. 18, 377–392 (1983)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Tilford, J.S.: Tree drawing algorithms. Technical Report UIUCDCS-R-81-1055, Department of Computer Science, University of Illinois at Urbana-Champaign (1981)Google Scholar
  30. 30.
    Valiant, L.: Universality considerations in VLSI circuits. IEEE Trans. Comput. C-30(2), 135–140 (1981)MathSciNetGoogle Scholar
  31. 31.
    Walker II, J.Q.: A node-positioning algorithm for general trees. Softw. – Pract. Exp. 20(7), 685–705 (1990)CrossRefGoogle Scholar
  32. 32.
    Wetherell, C., Shannon, A.: Tidy drawing of trees. IEEE Trans. Softw. Eng. SE-5(5), 514–520 (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • David Eppstein
    • 1
  • Michael T. Goodrich
    • 1
  • Jeremy Yu Meng
    • 1
  1. 1.School of Information and Computer ScienceUniversity of California, IrvineIrvineUSA

Personalised recommendations