Delta-Confluent Drawings

  • David Eppstein
  • Michael T. Goodrich
  • Jeremy Yu Meng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)


We generalize the tree-confluent graphs to a broader class of graphs called Δ-confluent graphs. This class of graphs and distance-hereditary graphs, a well-known class of graphs, coincide. Some results about the visualization of Δ-confluent graphs are also given.


Planar Graph Binary Tree Internal Node Hexagonal Grid Pendant Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aziza, S., Biedl, T.: Hexagonal grid drawings: Algorithms and lower bounds. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 18–24. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bandelt, H., Mulder, H.M.: Distance-hereditrary graphs. J. Combin. Theory Ser. B 41, 182–208 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous graph embedding. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 243–255. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Brent, R.P., Kung, H.T.: On the area of binary tree layouts. Inform. Process. Lett. 11, 521–534 (1980)CrossRefGoogle Scholar
  5. 5.
    Bridgeman, S., Garg, A., Tamassia, R.: A graph drawing and translation service on the WWW. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 45–52. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Chan, T.M., Goodrich, M.T., Kosaraju, S.R., Tamassia, R.: Optimizing area and aspect ratio in straight-line orthogonal tree drawings. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 63–75. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Choi, S.Y.: Orthogonal straight line drawing of trees. M.Sc. thesis, Dept. Comput. Sci., Univ. Brown, Providence, RI (1999)Google Scholar
  8. 8.
    Crescenzi, P., Di Battista, G., Piperno, A.: A note on optimal area algorithms for upward drawings of binary trees. Comput. Geom. Theory Appl. 2, 187–200 (1992)zbMATHGoogle Scholar
  9. 9.
    Damiand, G., Habib, M., Paul, C.: A simple paradigm for graph recognition: Application to cographs and distance hereditary graphs. Theor. Comput. Sci. 263(1-2), 99–111 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dickerson, M.T., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawing: Visualizing nonplanar diagrams in a planar way. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 1–12. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Duncan, C.A., Eppstein, D., Kobourov, S.G.: The geometric thickness of low degree graphs. In: 20th Annual ACM-SIAM Symposium on Computational Geometry (SCG 2004), pp. 340–346 (2004)Google Scholar
  12. 12.
    Eades, P., Lin, T., Lin, X.: Two tree drawing conventions. Internat. J. Comput. Geom. Appl. 3, 133–153 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Eades, P.D.: Drawing free trees. Bulletin of the Institute for Combinatorics and its Applications 5, 10–36 (1992)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 184–194. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Erten, C., Kobourov, S.G.: Simultaneous embedding of a planar graph and its dual on the grid. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 575–587. Springer, Heidelberg (2002)Google Scholar
  16. 16.
    Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 195–205. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)zbMATHGoogle Scholar
  18. 18.
    Garg, A., Goodrich, M.T., Tamassia, R.: Area-efficient upward tree drawings. In: Proc. 9th Annu. ACM Sympos. Comput. Geom., pp. 359–368 (1993)Google Scholar
  19. 19.
    Gregori, A.: Unit length embedding of binary trees on a square grid. Inform. Process. Lett. 31, 167–172 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hammer, P., Maffray, F.: Completely separable graphs. Discrete Appl. Math. 27, 85–99 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hui, P., Schaefer, M., Štefankovič, D.: Train tracks and confluent drawings. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 318–328. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Idicula, P.J.: Drawing trees in grids. Master’s thesis, Department of Computer Science, University of Auckland (1990)Google Scholar
  23. 23.
    Kant, G.: Hexagonal grid drawings. In: Proc. 18th Internat. Workshop Graph-Theoret. Concepts Comput. Sci. (1992)Google Scholar
  24. 24.
    Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: Proc. 21st Annu. IEEE Sympos. Found. Comput. Sci., pp. 270–281 (1980)Google Scholar
  25. 25.
    Leiserson, C.E.: Area-efficient graph layouts (for VLSI). ACM Doctoral Dissertation Award Series. MIT Press, Cambridge (1983)Google Scholar
  26. 26.
    Metaxas, P.T., Pantziou, G.E., Symvonis, A.: Parallel h-v drawings of binary trees. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS, vol. 834, pp. 487–495. Springer, Heidelberg (1994)Google Scholar
  27. 27.
    Reingold, E., Tilford, J.: Tidier drawing of trees. IEEE Trans. Softw. Eng. SE-7(2), 223–228 (1981)CrossRefGoogle Scholar
  28. 28.
    Supowit, K.J., Reingold, E.M.: The complexity of drawing trees nicely. Acta Inform. 18, 377–392 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Tilford, J.S.: Tree drawing algorithms. Technical Report UIUCDCS-R-81-1055, Department of Computer Science, University of Illinois at Urbana-Champaign (1981)Google Scholar
  30. 30.
    Valiant, L.: Universality considerations in VLSI circuits. IEEE Trans. Comput. C-30(2), 135–140 (1981)MathSciNetGoogle Scholar
  31. 31.
    Walker II, J.Q.: A node-positioning algorithm for general trees. Softw. – Pract. Exp. 20(7), 685–705 (1990)CrossRefGoogle Scholar
  32. 32.
    Wetherell, C., Shannon, A.: Tidy drawing of trees. IEEE Trans. Softw. Eng. SE-5(5), 514–520 (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • David Eppstein
    • 1
  • Michael T. Goodrich
    • 1
  • Jeremy Yu Meng
    • 1
  1. 1.School of Information and Computer ScienceUniversity of California, IrvineIrvineUSA

Personalised recommendations