Upward Spirality and Upward Planarity Testing

  • Walter Didimo
  • Francesco Giordano
  • Giuseppe Liotta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)


The upward planarity testing problem is known to be NP-hard. We describe an O(n 4)-time upward planarity testing and embedding algorithm for the class of digraphs that do not contain rigid triconnected components. We also present a new FPT algorithm that solves the upward planarity testing and embedding problem for general digraphs.


Planar Representation Planar Embedding Planar Drawing Virtual Edge External Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bertolazzi, P., Battista, G.D., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica 6(12), 476–497 (1994)CrossRefGoogle Scholar
  2. 2.
    Bertolazzi, P., Di Battista, G., Didimo, W.: Quasi-upward planarity. Algorithmica 32(3), 474–506 (2002)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Comput. 27, 132–169 (1998)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chan, H.: A parameterized algorithm for upward planarity testing. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 157–168. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-Hall, Upper Saddle River (1999)MATHGoogle Scholar
  6. 6.
    Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings. SIAM J. Comput. 27(6), 275–298 (1998)Google Scholar
  7. 7.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25, 956–997 (1996)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity testing. Technical report. RT-006-05, DIEI - Universitá di Perugia, Italy (2005)Google Scholar
  9. 9.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Healy, P., Lynch, K.: Building blocks of upward planar digraphs. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 296–306. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Healy, P., Lynch, K.: Building blocks of upward planar digraphs. Technical report, TR UL-CSIS-05-2 (2005)Google Scholar
  12. 12.
    Healy, P., Lynch, K.: Fixed-parameter tractable algorithms for testing upward planarity. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 199–208. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Hutton, M.D., Lubiw, A.: Upward planarity testing of single-source acyclic digraphs. SIAM J. Comput. 25(2), 291–311 (1996)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Papakostas, A.: Upward planarity testing of outerplanar dags. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 7298–7306. Springer, Heidelberg (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Walter Didimo
    • 1
  • Francesco Giordano
    • 1
  • Giuseppe Liotta
    • 1
  1. 1.Università di PerugiaItaly

Personalised recommendations