Advertisement

Volume Requirements of 3D Upward Drawings

  • Emilio Di Giacomo
  • Giuseppe Liotta
  • Henk Meijer
  • Stephen K. Wismath
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)

Abstract

This paper studies the problem of drawing directed acyclic graphs in three dimensions in the straight-line grid model, and so that all directed edges are oriented in a common (upward) direction. We show that there exists a family of outerplanar directed acyclic graphs whose volume requirement is super-linear. We also prove that for the special case of rooted trees a linear volume upper bound is achievable.

Keywords

Planar Graph Directed Acyclic Graph Undirected Graph Hamiltonian Path Volume Requirement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica 6(12), 476–497 (1994)CrossRefGoogle Scholar
  2. 2.
    Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Computing 27(1), 132–169 (1998)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bose, P., Czyzowicz, J., Morin, P., Wood, D.R.: The maximum number of edges in a three-dimensional grid-drawing. J. of Graph Algorithms and Applications 8(1), 21–26 (2004)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Calamoneri, T., Sterbini, A.: 3D straight-line grid drawing of 4-colorable graphs. Information Processing Letters 63(2), 97–102 (1997)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Cohen, R.F., Eades, P., Lin, T., Ruskey, F.: Three-dimensional graph drawing. Algorithmica 17(2), 199–208 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Di Battista, G., Tamassia, R., Tollis, I.G.: Area requirement and symmetry display of planar upward drawings. Discrete and Computational Geometry 7, 381–401 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Di Giacomo, E.: Drawing series-parallel graphs on restricted integer 3D grids. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 238–246. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Di Giacomo, E., Liotta, G., Meijer, H.: Computing straight-line 3D grid drawings of graphs in linear volume. Computational Geometry (to appear)Google Scholar
  9. 9.
    Dujmović, V., Morin, P., Wood, D.R.: Layout of graphs with bounded tree-width. SIAM J. on Computing 34(3), 553–579 (2005)zbMATHCrossRefGoogle Scholar
  10. 10.
    Dujmović, V., Por, A., Wood, D.R.: Track layouts of graphs. Discrete Math. Theor. Comput. Sci. 6(2), 497–522 (2004)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Dujmović, V., Wood, D.R.: Layouts of graph subdivisions. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 133–143. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Dujmović, V., Wood, D.R.: Three-dimensional grid drawings with sub-quadratic volume. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs, vol. 342, pp. 55–66 (2004)Google Scholar
  13. 13.
    Felsner, S., Liotta, G., Wismath, S.K.: Straight-line drawings on restricted integer grids in two and three dimensions. J. of Graph Algorithms and Applications 7(4), 363–398 (2003)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Computing 31(2), 601–625 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of posets. SIAM J. on Discrete Mathematics 10, 599–625 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of directed acyclic graphs: Part II. SIAM J. on Computing 28, 1588–1626 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Heath, L.S., Pemmaraju, S.V., Trenk, A.: Stack and queue layouts of directed acyclic graphs: Part I. SIAM J. on Computing 28, 1510–1539 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hutton, M.D., Lubiw, A.: Upward planning of single-source acyclic digraphs. SIAM J. on Computing 25(2), 291–311 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Poranen, T.: A new algorithm for drawing series-parallel digraphs in 3D. Technical Report A-2000-16, Dept. of Computer and Information Sciences, University of Tampere, Finland (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Emilio Di Giacomo
    • 1
  • Giuseppe Liotta
    • 1
  • Henk Meijer
    • 2
  • Stephen K. Wismath
    • 3
  1. 1.Dip. di Ing. Elettronica e dell’InformazioneUniversità degli Studi di PerugiaItaly
  2. 2.School of ComputingQueen’s UniversityKingstonCanada
  3. 3.Dept. of Math. and Computer ScienceUniversity of LethbridgeCanada

Personalised recommendations