Crossings and Permutations

  • Therese Biedl
  • Franz J. Brandenburg
  • Xiaotie Deng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3843)


We investigate crossing minimization problems for a set of permutations, where a crossing expresses a disarrangement between elements. The goal is a common permutation π* which minimizes the number of crossings. This is known as the Kemeny optimal aggregation problem minimizing the Kendall-τ distance. Recent interest into this problem comes from application to meta-search and spam reduction on the Web.

This rank aggregation problem can be phrased as a one-sided two-layer crossing minimization problem for an edge coloured bipartite graph, where crossings are counted only for monochromatic edges.

Here we introduce the max version of the crossing minimization problem, which attempts to minimize the discrimination against any permutation. We show the NP-hardness of the common and the max version for k ≥ 4 permutations (and k even), and establish a 2-2/k and a 2-approximation, respectively. For two permutations crossing minimization is solved by inspecting the drawings, whereas it remains open for three permutations.


  1. 1.
    Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. In: STOC, pp. 684–693 (2005)Google Scholar
  2. 2.
    Barthelemy, J.P., Guenoche, A., Hudry, O.: Median linear orders: heuristics and a branch and bound algorithm. Europ. J. Oper. Res. 42, 313–325 (1989)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bartholdi III, J., Tovey, C.A., Trick, M.A.: Voting schemes for which it can be difficult to tell who won the election. Soc. Choice Welfare 6, 157–165 (1989)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Charon, I., Guenoche, A., Hudry, O., Woirgard, F.: New results on the computation of median orders. Discrete Math. 165/166, 139–153 (1997)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Chin, F.Y.L., Deng, X., Feng, Q., Zhu, S.: Approximate and dynamic rank aggregation. Theoret. Comput. Sci. 325, 409–424 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Demetrescu, C., Finochi, I.: Breaking cycles for minimizing crossings. Electronic J. Algorithm Engineering 6(2) (2001)Google Scholar
  7. 7.
    Diaconis, P., Graham, R.: Spearman’s footrule as a measure for disarray. Journal of the Royal Statistical Society, Series B 39, 262–268 (1977)MATHMathSciNetGoogle Scholar
  8. 8.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  9. 9.
    Dwork, C., Kumar, R., Noar, M., Sivakumar, D.: Rank aggregation methods for the Web. In: Proc. WWW 10, pp. 613–622 (2001)Google Scholar
  10. 10.
    Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11, 379–403 (1994)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica 20, 151–174 (1998)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, San Francisco (1979)MATHGoogle Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Alg. Disc. Meth. 4, 312–316 (1983)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Jünger, M., Mutzel, P.: 2-layer straightline crossing minimization: performance of exact and heuristic algorithms. J. Graph Alg. Appl. 1, 1–25 (1997)Google Scholar
  15. 15.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs: Methods and Models. LNCS, vol. 2025. Springer, Heidelberg (2001)MATHGoogle Scholar
  16. 16.
    Kemeny, J.G.: Mathematics without numbers. Daedalus 88, 577–591 (1959)Google Scholar
  17. 17.
    Munos, X., Unger, W., Vrto, I.: One sided crossing minimization is NP-hard for sparse graphs. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 115–123. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Moon, J.W.: Topics on Tournaments. Holt, New York (1968)MATHGoogle Scholar
  19. 19.
    Nagamochi, H.: An Improved approximation to the One-Sided Bilayer Drawing. Discr. Comp. Geometry 33(4), 569–591 (2005)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical systems structures. IEEE Trans. SMC 11, 109–125 (1981)MathSciNetGoogle Scholar
  21. 21.
    Waddle, V., Malhotra, A.: An E logE line crossing algorithm for leveled graphs. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 59–70. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  22. 22.
    Yamaguchi, A., Sugimoto, A.: An approximation algorithm for the two-layered graph drawing problem. Discrete Comput. Geom. 33, 565–591 (2005)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Therese Biedl
    • 1
  • Franz J. Brandenburg
    • 2
  • Xiaotie Deng
    • 3
  1. 1.School of Computer ScienceUniversity of WaterlooCanada
  2. 2.Lehrstuhl für InformatikUniversität PassauPassauGermany
  3. 3.Department of Computer ScienceCity University of Hong KongHong Kong, SARChina

Personalised recommendations