Advertisement

Solving Two Problems in General Topology Via Types

  • Adam Grabowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3839)

Abstract

In the paper we show, based on two problems in general topology (Kuratowski closure-complement and Isomichi’s classification of condensed subsets), how typed objects can be used instead of untyped text to better represent mathematical content understandable both for human and computer checker. We present mechanism of attributes and clusters reimplemented in Mizar fairly recently to fit authors’ expectations. The problem of knowledge reusability which is crucial if we develop a large unified repository of mathematical facts, is also addressed.

Keywords

Topological Space General Topology Natural Topology Formal Topology Jordan Curve Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Journal of Formalized Mathematics, accessible at, http://mizar.uwb.edu.pl/JFM/, Mizar library available at, ftp://mizar.uwb.edu.pl/pub/mml/
  2. 2.
    Bagińska, L.K., Grabowski, A.: On the Kuratowski closure-complement problem. Formalized Mathematics 11(3), 321–327 (2003); MML Id in [1]: KURAT0_1Google Scholar
  3. 3.
    Bancerek, G.: On the structure of Mizar types. In: Geuvers, H., Kamareddine, F. (eds.) Proc. of MLC 2003. ENTCS, vol. 85(7) (2003)Google Scholar
  4. 4.
    Cairns, P., Gow, J., Collins, P.: On dynamically presenting a topology course. Annals of Mathematics and Artificial Intelligence 38(1-3), 91–104 (2003)zbMATHCrossRefGoogle Scholar
  5. 5.
    Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN, the Constructive Coq Repository at Nijmegen. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 88–103. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Darmochwał, A.: Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics 1(2), 257–261 (1990); MML Id in [1]: TOPS_2 Google Scholar
  7. 7.
    Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: A Compendium of Continuous Lattices. Springer, Heidelberg (1980)zbMATHGoogle Scholar
  8. 8.
    Isomichi, Y.: New concepts in the theory of topological space – supercondensed set, subcondensed set, and condensed set. Pacific Journal of Mathematics 38(3), 657–668 (1971)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Jastrzȩbska, M., Grabowski, A.: The properties of supercondensed sets, subcondensed sets, and condensed sets. To appear in Formalized Mathematics (2005); MML Id in [1]: ISOMICHIGoogle Scholar
  10. 10.
    Kelley, J.L.: General Topology. Van Nostrand (1955)Google Scholar
  11. 11.
    Kuratowski, K.: Sur l’opération \(\overline{A}\) de l’Analysis Situs. Fundamenta Mathematicae 3, 182–199 (1922)zbMATHGoogle Scholar
  12. 12.
    Kuratowski, K.: Topology. PWN – Polish Scientific Publishers, Warszawa (1966)Google Scholar
  13. 13.
    Padlewska, B., Darmochwał, A.: Topological spaces and continuous functions. Formalized Mathematics 1(1), 223–230 (1990); MML Id in [1]: PRE_TOPCGoogle Scholar
  14. 14.
    Romanowicz, E., Grabowski, A.: Hall Marriage Theorem. Formalized Mathematics 12(3), 315–320 (2004); MML Id in [1]: HALLMAR1Google Scholar
  15. 15.
  16. 16.
    Sambin, G.: Some points in formal topology. Theoretical Computer Science 305(1-3), 347–408 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Sherman, D.: Variations on Kuratowski’s 14-set theorem, available at, http://www.math.uiuc.edu/~dasherma/14-sets.pdf
  18. 18.
    Takeuchi, Y., Nakamura, Y.: On the Jordan curve theorem. Shinshu Univ. (1980)Google Scholar
  19. 19.
    Wiedijk, F.: Seventeen provers of the world, available at, http://www.cs.ru.nl/~freek/comparison/
  20. 20.
    Weisstein, E.W., et al.: Kuratowski’s closure-complement problem, from MathWorld – a Wolfram Web Resource, http://mathworld.wolfram.com/KuratowskisClosure-ComplementProblem.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Adam Grabowski
    • 1
  1. 1.Institute of MathematicsUniversity of BiałystokBiałystokPoland

Personalised recommendations