Applying Fujisaki-Okamoto to Identity-Based Encryption

  • Peng Yang
  • Takashi Kitagawa
  • Goichiro Hanaoka
  • Rui Zhang
  • Kanta Matsuura
  • Hideki Imai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3857)

Abstract

The Fujisaki-Okamoto (FO) conversion is widely known to be able to generically convert a weak public key encryption scheme, say one-way against chosen plaintext attacks (OW-CPA), to a strong one, namely, indistinguishable against adaptive chosen ciphertext attacks (IND-CCA). It is not known that if the same holds for identity-based encryption (IBE) schemes, though many IBE and variant schemes are in fact specifically using the FO conversion. In this paper, we investigate this issue and confirm that the FO conversion is generically effective also in the IBE case. However, straightforward application of the FO conversion only leads to an IBE scheme with a loose (but polynomial) reduction. We then propose a simple modification to the FO conversion, which results in considerably more efficient security reduction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Attrapadung, N., Cui, Y., Hanaoka, G., Imai, H., Matsuura, K., Yang, P., Zhang, R.: Relations among notions of security for identity based encryption schemes. Cryptology ePrint Archive, Report 2005/258 (2005), http://eprint.iacr.org/2005/258
  2. 2.
    Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with rsa and rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 53–68. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Galindo, D., Hasuo, I.: Security notions for identity based encryption. Cryptology ePrint Archive, Report 2005/253 (2005), http://eprint.iacr.org/2005/253
  8. 8.
    Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Okamoto, T., Pointcheval, D.: React: Rapid enhanced-security asymmetric cryptosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 159–174. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  11. 11.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peng Yang
    • 1
  • Takashi Kitagawa
    • 2
  • Goichiro Hanaoka
    • 2
  • Rui Zhang
    • 1
  • Kanta Matsuura
    • 1
  • Hideki Imai
    • 1
    • 2
  1. 1.Institute of Industrial ScienceUniversity of TokyoTokyoJapan
  2. 2.Research Centre for Information Security (RCIS)National Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan

Personalised recommendations