nD Polyhedral Scene Reconstruction from Single 2D Line Drawing by Local Propagation

  • Hongbo Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3763)


In this paper, we study the problem of reconstructing the polyhedral structures and geometric positions of a general nD polyhedral scene from a single 2D line drawing. With the idea of local construction and propagation, we propose several powerful techniques for structural reconstruction (i.e. face identification) and geometric reconstruction (i.e. realizability and parametrization). Our structural reconstruction algorithm can handle 3D solids of over 10,000 faces efficiently, outperforming any other existing method. Our geometric reconstruction algorithm can lead to amazing simplification in symbolic manipulation of the geometric data, and can be used to find linear construction sequences for non-spherical polyhedra.


Polyhedra Structural Reconstruction Geometric Reconstruction Grassmann-Cayley Algebra Local Propagation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwel, S.C., Waggenspack, W.: Decomposition method for extracting face topologies from wireframe models. Computer Aided Design 24(3), 123–140 (1992)CrossRefGoogle Scholar
  2. 2.
    Bokowski, J., Sturmfels, B.: Computational Synthetic Geometry. LNM, vol. 1355. Springer, Heidelberg (1989)zbMATHGoogle Scholar
  3. 3.
    Courter, S., Brewer, J.: Automated conversion of curvilinear wireframe models to surface boundary models. Comput. Graph. 20(4), 171–178 (1986)CrossRefGoogle Scholar
  4. 4.
    Crapo, H., Whiteley, W.: Stresses on Frameworks and Motions of Panel Structures: a Projective Geometric Introduction. Structural Topology 6, 42–82 (1982)MathSciNetGoogle Scholar
  5. 5.
    Crapo, H.: Invariant-Theoretic Methods in Scene Analysis and Structural Mechanics. J. of Symbolic Computation 11, 523–548 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ganter, M., Uicker, J.: From wireframe to solid geometric: Automated conversion of data representations. Computer in Mechanical Eng 2(2), 40–45 (1983)Google Scholar
  7. 7.
    Hanrahan, P.: Creating volume models from edge-vertex Graphs. Computer Graphics 16(3), 77–84 (1982)CrossRefGoogle Scholar
  8. 8.
    Huffman, D.: Realizable Configurations of Lines in Pictures of Polyhedra. Machine Intelligence 8, 493–509 (1977)Google Scholar
  9. 9.
    Leclerc, Y., Fischler, M.: An optimization based approach to the interpretation of single line drawings as 3d wireframes. International J. Computer Vision 8(2), 113–136 (1992)CrossRefGoogle Scholar
  10. 10.
    Li, H.: Vectorial Equation-Solving for Mechanical Geometry Theorem Proving. J. Automated Reasoning 25, 83–121 (2000)zbMATHCrossRefGoogle Scholar
  11. 11.
    Li, H., Sommer, G.: Coordinate-free projective geometry for computer vision. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebra, pp. 415–454. Springer, Heidelberg (2001)Google Scholar
  12. 12.
    Li, H., Zhao, L.: A symbolic approach to polyhedral scene analysis by parametric calotte propagation. MM Research Preprints 22, 194–230 (2003), Available
  13. 13.
    Li, H., Wang, Q., Zhao, L., Chen, Y., Huang, L.: nD object representation and detection from single 2D line drawing. MM Research Preprints 23, 178–195 (2004), Available
  14. 14.
    Liu, J., Lee, Y.: A graph-based method for face identification from a single 2d line drawing. IEEE Trans. on PAMI 23(10), 1106–1119 (2001)Google Scholar
  15. 15.
    Liu, J., Lee, Y., Cham, C.: Identifying faces in a 2d line drawing representing a manifold object. IEEE Trans. on PAMI 24(12), 1579–1593 (2002)Google Scholar
  16. 16.
    Mackworth, A.: Interpreting Pictures of Polyhedral Scenes. Artificial Intelligence 4, 121–137 (1973)CrossRefGoogle Scholar
  17. 17.
    Marill, T.: Emulation the human interpretation of line drawings as 3d objects. International J. of Computer Vision 6(2), 147–161 (1991)CrossRefGoogle Scholar
  18. 18.
    Miyazaki, K.: An Adventure in Multidimensional Space: The Art and Geometry of Polygons. In: Polyhedra, and Polytopes. Wiley Interscience Publ., Hoboken (1983)Google Scholar
  19. 19.
    Richter-Gebert, J.: Realization Spaces of Polytopes. LNM, vol. 1643. Springer, Wien (1996)Google Scholar
  20. 20.
    Ros, L., Thomas, F.: Overcoming Superstrictness in Line Drawing Interpretation. IEEE Trans. PAMI 24(4), 456–466 (2002)Google Scholar
  21. 21.
    Shpitalni, M., Lipson, H.: Identification of faces in a 2d line drawing projection of a wireframe object. IEEE Trans. on PAMI 18(10), 1000–1012 (1996)Google Scholar
  22. 22.
    Sturmfels, B.: Algorithms in Invariant Theory. Springer, Wien (1993)zbMATHGoogle Scholar
  23. 23.
    Sugihara, K.: Mathematical Structures of Line Drawings of Polyhedrons – Towards Man-Machine Communication by Means of Line Drawings. IEEE Trans. on PAMI 4, 458–469 (1982)Google Scholar
  24. 24.
    Sugihara, K.: An Algebraic Approach to Shape-from-Image Problems. Artificial Intelligence 23, 59–95 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Sugihara, K.: Machine Interpretation of Line Drawings. MIT Press, Cambridge (1986)Google Scholar
  26. 26.
    Sugihara, K.: Resolvable Representation of Polyhedra. Discrete Computational Geometry 21(2), 243–255 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Turner, A., Chapman, D., Penn, A.: Sketching space. Computers and Graphics 24, 869–879 (2000)CrossRefGoogle Scholar
  28. 28.
    White, N., Whiteley, W.: The Algebraic Geometry of Stresses in Frameworks. SIAM J. Alg. Discrete Math. 4, 481–511 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    White, N.: Multilinear Cayley Factorization. J. of Symbolic Computation 11, 421–438 (1991)zbMATHCrossRefGoogle Scholar
  30. 30.
    Whiteley, W.: From a Line Drawing to a Polyhedron. J. Math. Psych. 31, 441–448 (1987)CrossRefGoogle Scholar
  31. 31.
    Whiteley, W.: Matroids and Rigid Structures. In: White, N. (ed.) Matroid Applications. Encyclopedia of Mathematics and Its Applications, vol. 40, pp. 1–53. Cambridge University Press, Cambridge (1992)CrossRefGoogle Scholar
  32. 32.
    Wu, W.-T.: Mathematics Mechanization. Science Press/Kluwer Academic Publishers (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hongbo Li
    • 1
  1. 1.Mathematics Mechanization Key Laboratory, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina

Personalised recommendations