Advertisement

Contribution to Gene Expression Data Analysis by Means of Set Pattern Mining

  • Ruggero G. Pensa
  • Jérémy Besson
  • Céline Robardet
  • Jean-François Boulicaut
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3848)

Abstract

One of the exciting scientific challenges in functional genomics concerns the discovery of biologically relevant patterns from gene expression data. For instance, it is extremely useful to provide putative synexpression groups or transcription modules to molecular biologists. We propose a methodology that has been proved useful in real cases. It is described as a prototypical KDD scenario which starts from raw expression data selection until useful patterns are delivered. It has been validated on real data sets. Our conceptual contribution is (a) to emphasize how to take the most from recent progress in constraint-based mining of set patterns, and (b) to propose a generic approach for gene expression data enrichment. Doing so, we survey our algorithmic breakthrough which has been the core of our contribution to the IST FET cInQ project.

Keywords

Gene Expression Data Association Rule Formal Concept Boolean Matrix Monotonic Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DeRisi, J., Iyer, V., Brown, P.: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997)CrossRefGoogle Scholar
  2. 2.
    Velculescu, V., Zhang, L., Vogelstein, B., Kinzler, K.: Serial analysis of gene expression. Science 270, 484–487 (1995)CrossRefGoogle Scholar
  3. 3.
    Niehrs, C., Pollet, N.: Synexpression groups in eukaryotes. Nature 402, 483–487 (1999)CrossRefGoogle Scholar
  4. 4.
    Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998)CrossRefGoogle Scholar
  5. 5.
    Robardet, C., Feschet, F.: Efficient local search in conceptual clustering. In: Jantke, K.P., Shinohara, A. (eds.) DS 2001. LNCS (LNAI), vol. 2226, pp. 323–335. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Dhillon, I., Mallela, S., Modha, D.: Information-theoretic co-clustering. In: Proceedings ACM SIGKDD 2003, pp. 1–10. ACM, New York (2003)Google Scholar
  7. 7.
    Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y., Barkai, N.: Revealing modular organization in the yeast transcriptional network. Nature Genetics 31, 370–377 (2002)Google Scholar
  8. 8.
    Bergmann, S., Ihmels, J., Barkai, N.: Iterative signature algorithm for the analysis of large-scale gene expression data. Physical Review 67 (2003)Google Scholar
  9. 9.
    Becquet, C., Blachon, S., Jeudy, B., Boulicaut, J.F., Gandrillon, O.: Strong association rule mining for large gene expression data analysis: a case study on human SAGE data. Genome Biology 12 (2002), See, http://genomebiology.com/2002/3/12/research/0067
  10. 10.
    Creighton, C., Hanash, S.: Mining gene expression databases for association rules. Bioinformatics 19, 79–86 (2003)CrossRefGoogle Scholar
  11. 11.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered sets, pp. 445–470. Reidel, Dordrecht (1982)Google Scholar
  12. 12.
    Rioult, F., Boulicaut, J.F., Crémilleux, B., Besson, J.: Using transposition for pattern discovery from microarray data. In: Proceedings ACM SIGMOD Workshop DMKD 2003, San Diego, USA, pp. 73–79 (2003)Google Scholar
  13. 13.
    Rioult, F., Robardet, C., Blachon, S., Crémilleux, B., Gandrillon, O., Boulicaut, J.F.: Mining concepts from large SAGE gene expression matrices. In: Proceedings KDID 2003 co-located with ECML-PKDD 2003, Catvat-Dubrovnik, Croatia, pp. 107–118 (2003)Google Scholar
  14. 14.
    Besson, J., Robardet, C., Boulicaut, J.F., Rome, S.: Constraint-based concept mining and its application to microarray data analysis. Intelligent Data Analysis journal 9, 59–82 (2005)Google Scholar
  15. 15.
    Boulicaut, J.F., Klemettinen, M., Mannila, H.: Modeling KDD processes within the inductive database framework. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 293–302. Springer, Heidelberg (1999)Google Scholar
  16. 16.
    De Raedt, L.: A perspective on inductive databases. SIGKDD Explorations 4, 69–77 (2003)CrossRefGoogle Scholar
  17. 17.
    Pensa, R., Leschi, C., Besson, J., Boulicaut, J.F.: Assessment of discretization techniques for relevant pattern discovery from gene expression data. In: Proceedings 4th ACM SIGKDD Workshop BIOKDD 2004, Seattle, USA, pp. 24–30. ACM, New York (2004)Google Scholar
  18. 18.
    Boulicaut, J.F., Bykowski, A., Rigotti, C.: Free-sets: a condensed representation of boolean data for the approximation of frequency queries. Data Mining and Knowledge Discovery journal 7, 5–22 (2003)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Besson, J., Robardet, C., Boulicaut, J.F.: Constraint-based mining of formal concepts in transactional data. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 615–624. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Pensa, R., Besson, J., Boulicaut, J.F.: A methodology for biologically relevant pattern discovery from gene expression data. In: Suzuki, E., Arikawa, S. (eds.) DS 2004. LNCS (LNAI), vol. 3245, pp. 230–241. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Robardet, C., Pensa, R., Besson, J., Boulicaut, J.F.: Using classification and visualization on pattern databases for gene expression data analysis. In: Proceedings PaRMa 2004 co-located with EDBT 2004, Heraclion - Crete, Greece. CEUR Workshop Proceedings, vol. 96 (2004)Google Scholar
  22. 22.
    Arbeitman, M., Furlong, E., Imam, F., Johnson, E., Null, B., Baker, B., Krasnow, M., Scott, M., Davis, R., White, K.: Gene expression during the life cycle of drosophila melanogaster. Science 297, 2270–2275 (2002)CrossRefGoogle Scholar
  23. 23.
    Ashburnerand, M., Ball, C., Blake, J., Botstein, D., et al.: Gene ontology: tool for the unification of biology. the gene ontology consortium. Nature Genetics 25, 25–29 (2000)CrossRefGoogle Scholar
  24. 24.
    Goethals, B., Zaki, M.: Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations FIMI 2003, Melbourne, USA (2003)Google Scholar
  25. 25.
    Stumme, G., Taouil, R., Bastide, Y., Pasqier, N., Lakhal, L.: Computing iceberg concept lattices with TITANIC. Data & Knowledge Engineering 42, 189–222 (2002)zbMATHCrossRefGoogle Scholar
  26. 26.
    Lash, A., Tolstoshev, C., Wagner, L., Schuler, G., Strausberg, R., Riggins, G., Altschul, S.: SAGEmap: A public gene expression resource. Genome Research 10, 1051–1060 (2000)CrossRefGoogle Scholar
  27. 27.
    Rome, S., Clément, K., Rabasa-Lhoret, R., Loizon, E., Poitou, C., Barsh, G.S., Riou, J.P., Laville, M., Vidal, H.: Microarray profiling of human skeletal muscle reveals that insulin regulates 800 genes during an hyperinsulinemic clamp. Journal of Biological Chemistry 278(20), 18063–18068 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ruggero G. Pensa
    • 1
  • Jérémy Besson
    • 1
    • 2
  • Céline Robardet
    • 3
  • Jean-François Boulicaut
    • 1
  1. 1.INSA Lyon, LIRIS CNRS UMR 5205VilleurbanneFrance
  2. 2.UMR INRA/INSERM 1235LyonFrance
  3. 3.INSA Lyon, PRISMAVilleurbanneFrance

Personalised recommendations