Advertisement

Remarks on the Industrial Application of Inductive Database Technologies

  • Kimmo Hätönen
  • Mika Klemettinen
  • Markus Miettinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3848)

Abstract

The research in the area of inductive databases has taken huge steps forward during recent years. Various results have been produced and published by many groups all around the world. The next big challenge for the research community together with industry is to integrate these results to the existing systems and to enhance current solutions to better answer to the real world challenges. In this article we give an industrial perspective for exploring, validating and exploiting new techniques like inductive databases. We discuss various requirements that industrial processes set for the methods and tools. Based on our own ten year experience in the field we also study reasons and background for why some systems are taken into use and some are not.

Keywords

Association Rule Event Type Domain Expert Frequent Pattern Network Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings SIGMOD 1993, Washington, USA, May 1993, pp. 207–216. ACM Press, New York (1993)CrossRefGoogle Scholar
  2. 2.
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press, Menlo Park (1996)Google Scholar
  3. 3.
    Boulicaut, J.-F., Bykowski, A.: Frequent closures as a concise representation for binary data mining. In: Terano, T., Chen, A.L.P. (eds.) PAKDD 2000. LNCS (LNAI), vol. 1805, pp. 62–73. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Bui, T., Higa, K., Sivakumar, V., Yen, J.: Beyond telecommuting: Organizational suitability of different modes of telework. In: Proceedings of the 29th Annual Hawaii International Conference on System Sciences, Maui, Hawaii, USA, pp. 344–353 (1996)Google Scholar
  5. 5.
    Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: An overview. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 1–34. AAAI Press, Menlo Park (1996)Google Scholar
  6. 6.
    Hätönen, K., Boulicaut, J.F., Klemettinen, M., Miettinen, M., Masson, C.: Comprehensive log compression with frequent patterns. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Hätönen, K., Halonen, P., Klemettinen, M., Miettinen, M.: Queryable lossless log database compression. In: Proceedings of the 2nd International Workshop on Knowledge Discovery in Inductive Databases - (KDID 2003), Cavtat-Dubrovnik, Croatia (September 2003)Google Scholar
  8. 8.
    Hätönen, K., Klemettinen, M.: Domain structures in filtering irrelevant frequent patterns. In: Meo, R., Lanzi, P.L., Klemettinen, M. (eds.) Database Support for Data Mining Applications. LNCS (LNAI), vol. 2682, pp. 289–305. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Hätönen, K., Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H.: Knowledge discovery from telecommunication network alarm databases. In: Proceedings of the 12th International Conference on Data Engineering (ICDE 1996), New Orleans, Louisiana, pp. 115–122. IEEE Computer Society Press, Los Alamitos (February 1996)Google Scholar
  10. 10.
    Hätönen, K., Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H.: TASA: Telecommunication alarm sequence analyzer, or ”How to enjoy faults in your network”. In: Proceedings of the 1996 IEEE Network Operations and Management Symposium (NOMS 1996), Kyoto, Japan, pp. 520–529. IEEE, Los Alamitos (April 1996)Google Scholar
  11. 11.
    Keen, P.: Information systems and organizational change. Communications of the ACM 24(1), 24–33 (1981)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Leavitt, H.: Applying organizational change in industry: Structural, technological and humanistic approaches. In: March, J. (ed.) Handbook of Organizations, Rand McNally, Chicago, Illinois, USA (1965)Google Scholar
  13. 13.
    Lee, S.D., De Raedt, L.: Mining logical sequences. In: Meo, R., Lanzi, P.L., Klemettinen, M. (eds.) Database Support for Data Mining Applications. LNCS (LNAI), vol. 2682. Springer, Heidelberg (2004) (to appear)Google Scholar
  14. 14.
    Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery 1(3), 259–289 (1997)CrossRefGoogle Scholar
  15. 15.
    Niederman, F., Trower, J.: Industry influence on IS personnel and roles. In: Proceedings of the 1993 Conference on Computer Personnel Research, St Louis, Missouri, USA, pp. 226–233 (1993)Google Scholar
  16. 16.
    Nurminen, J.K.: Modelling and implementation issues in circuit and network planning tools. PhD thesis, Helsinki University of Technology, Systems Analysis Laboratory, P.O.Box 1100, FIN-02015 HUT, Finland (May 2003)Google Scholar
  17. 17.
    Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using closed itemset lattices. Information Systems 24(1), 25–46 (1999)CrossRefGoogle Scholar
  18. 18.
    Pei, J., Han, J., Mao, R.: CLOSET an efficient algorithm for mining frequent closed itemsets. In: Proceedings SIGMOD Workshop DMKD 2000, Dallas, USA (May 2000)Google Scholar
  19. 19.
    Rioult, F., Robardet, C., Blachon, S., Crémilleux, B., Gandrillon, O., Boulicaut, J.-F.: Mining concepts from large sage gene expression matrices. In: Proceedings of the 2nd International Workshop on Knowledge Discovery in Inductive Databases - (KDID 2003) co-located with ECML-PKDD 2003, Cavtat-Dubrovnik, Croatia (September 2003)Google Scholar
  20. 20.
    Zaki, M.J.: Generating non-redundant association rules. In: Proceedings SIGKDD 2000, Boston, USA, pp. 34–43. ACM Press, New York (August 2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kimmo Hätönen
    • 1
  • Mika Klemettinen
    • 1
  • Markus Miettinen
    • 1
  1. 1.Nokia GroupNokia Research CenterFinland

Personalised recommendations