Robot Control: From Silicon Circuitry to Cells

  • Soichiro Tsuda
  • Klaus-Peter Zauner
  • Yukio-Pegio Gunji
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3853)


Life-like adaptive behaviour is so far an illusive goal in robot control. A capability to act successfully in a complex, ambiguous, and harsh environment would vastly increase the application domain of robotic devices. Established methods for robot control run up against a complexity barrier, yet living organisms amply demonstrate that this barrier is not a fundamental limitation. To gain an understanding of how the nimble behaviour of organisms can be duplicated in made-for-purpose devices we are exploring the use of biological cells in robot control. This paper describes an experimental setup that interfaces an amoeboid plasmodium of Physarum polycephalum with an omnidirectional hexapod robot to realise an interaction loop between environment and plasticity in control. Through this bio-electronic hybrid architecture the continuous negotiation process between local intracellular reconfiguration on the micro-physical scale and global behaviour of the cell in a macroscale environment can be studied in a device setting.


Robot Control Robotic Device Robot Controller Physarum Polycephalum Interaction Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lettvin, J.Y., Maturana, H.R., McCulloch, W.S., Pitts, W.H.: What the frog’s eye tells the frog’s brain. Proc. Inst. Radio Engr. 47, 1940–1951 (1959); Reprinted in: Corning, W.C., Balaban, M. (eds.): The Mind: Biological Approaches to its Functions, pp. 233–258 (1968) 1968, .Google Scholar
  2. 2.
    Braitenberg, V.: Experiments in Synthetic Psychology. MIT Press, Cambridge (1984)Google Scholar
  3. 3.
    Webb, B.: View from the boundary. Biological Bulletin 200(2), 184–189 (2001)CrossRefGoogle Scholar
  4. 4.
    Hasslacher, B., Tilden, M.W.: Living machines. Robotics and Autonomous Systems, 143–169 (1995)Google Scholar
  5. 5.
    Beer, R.D.: Intelligence as Adaptive Behavior, an Experiment in Computational Neuroethology. Academic Press, London (1990)zbMATHGoogle Scholar
  6. 6.
    Chiel, H.J., Beer, R.D.: The brain has a body: adaptive behavior emerges from interaction of nervous system, body and environment. Trends In Neuroscience 12, 553–557 (1997)CrossRefGoogle Scholar
  7. 7.
    Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition: The Realization of the Living. Boston Studies in the Philosophy of Science, vol. 42. D. Reidel Publishing, Dordecht (1980)Google Scholar
  8. 8.
    Cariani, P.: Some epistemological implications of devices which construct their own sensors and effectors. In: Varela, F.J., Bourgine, P. (eds.) Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, pp. 484–493. MIT Press, Cambridge (1992)Google Scholar
  9. 9.
    Chapin, J.K., Moxon, K.A., Markowitz, R.S., Nicolelis, M.A.L.: Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nature neuroscience 2(7), 664–670 (1999)CrossRefGoogle Scholar
  10. 10.
    DeMarse, T.B., Wagenaar, D.A., Blau, A.W., Potter, S.M.: The neurally controlled animat: Biological brains acting with simulated bodies. Autonomous Robots 11, 305–310 (2001)zbMATHCrossRefGoogle Scholar
  11. 11.
    Rinaldo, K.: Augmented fish reality. ARS Electronica Center, Linz (2004), See also:
  12. 12.
    Adler, J., Tso, W.-W.: “Decision”-making in bacteria: Chemotactic response of Escherichia coli to conflicting stimuli. Science 184, 1292–1294 (1974)CrossRefGoogle Scholar
  13. 13.
    Zauner, K.-P.: Molecular information technology. Critical Reviews in Solid State and Material Sciences 30(1), 33–69 (2005)CrossRefGoogle Scholar
  14. 14.
    Rothstein, J.: Information, measurement, and quantum mechanics (1951); Reprinted in: H. S. Leff and A. F. Rex (Eds.): Maxwell’s Demon—Entropy, Information, Computing, pp. 104–108. Adam Hilger, Bristol (1990)Google Scholar
  15. 15.
    Skoultchi, A.I., Morowitz, H.J.: Information storage and survival of biological systems at temperatures near absolute zero. Yale J. Biol. Med. 37, 158–163 (1964)Google Scholar
  16. 16.
    Kondo, H., Yamamoto, M., Watanabe, M.: Reversible intracellular displacement of the cytoskeletal protein and organelles by ultracentrifugation of the sympathetic ganglion. J. Submicrosc. Cytol. Pathol. 24, 241–250 (1992)Google Scholar
  17. 17.
    Conrad, M.: The price of programmability. The Universal Turing Machine: A Half-Century Survey, 285–307 (1988)Google Scholar
  18. 18.
    Korohoda, W., Rakoczy, L., Walczak, T.: On the control mechanism of protoplasmic streamings in the plasmodia of Myxomycetes. Acta Protozoologica VII(29), 363–373 (1970)Google Scholar
  19. 19.
    Ueda, T., Matsumoto, K., Kobatake, Y.: Spatial and temporal organization of intracellular adenine nucleotides and cyclic nucleotides in relation to rhythmic motility in physarum plasmodium. Experimental Cell Research 162(2), 486–494 (1986)CrossRefGoogle Scholar
  20. 20.
    Durham, A.C.H., Ridgway, E.B.: Control of chemotaxis in physarum polycephalum. The Journal of Cell Biology 69, 218–223 (1976)CrossRefGoogle Scholar
  21. 21.
    Miura, H., Yano, M.: A model of organization of size invariant positional information in taxis of physarum plasmodium. Progress of Theoretical Physics 100(2), 235–251 (1998)CrossRefGoogle Scholar
  22. 22.
    Miyake, Y., Tabata, S., Murakami, H., Yano, M., Shimizu, H.: Environmental-dependent self-organization of positional information field in chemotaxis of physarum plasmodium. Journal of Theoretical Biology 178, 341–353 (1996)CrossRefGoogle Scholar
  23. 23.
    Nakagaki, T., Yamada, H., Toth, A.: Intelligence: Maze-solving by an amoeboid organism. Nature 407, 470 (2000)CrossRefGoogle Scholar
  24. 24.
    Nakagaki, T., Kobayashi, R., Nishiura, Y., Ueda, T.: Obtaining multiple separate food sources: behavioural intelligence in the physarum plasmodium. R. Soc. Proc.: Biol. Sci. 271(1554), 2305–2310 (2004)CrossRefGoogle Scholar
  25. 25.
    Aono, M.: Personal communication (2004)Google Scholar
  26. 26.
    Tsuda, S., Aono, M., Gunji, Y.-P.: Robust and emergent physarum logical-computing. BioSystems 73, 45–55 (2004)CrossRefGoogle Scholar
  27. 27.
    Zauner, K.-P.: From prescriptive programming of solid-state devices to orchestrated self-organisation of informed matter. In: Banâtre, J.-P., Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 47–55. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Takamtsu, A., Fujii, T., Endo, I.: Control of interaction strength in a network of the true slime mold by a microfabricated structure. BioSystems 55, 33–38 (2000)CrossRefGoogle Scholar
  29. 29.
    Nomura, S.: Symbolization of an object and its freedom in biological systems. PhD thesis, Kobe University (2001)Google Scholar
  30. 30.
    Ueda, T., Mori, Y., Nakagaki, T., Kobatake, Y.: Action spectra for superoxide generation and UV and visible light photoavoidance in plasmodia of physarum polycephalum. Photochemistry and Photobiology 48, 705–709 (1988)CrossRefGoogle Scholar
  31. 31.
    Conrad, M.: Emergent computation through self-assembly. Nanobiology 2, 5–30 (1993)Google Scholar
  32. 32.
    Gunji, Y.-P., Takahashi, T., Aono, M.: Dynamical infomorphism: form of endo-perspective. Chaos, Solitons and Fractals 22, 1077–1101 (2004)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Soichiro Tsuda
    • 1
  • Klaus-Peter Zauner
    • 2
  • Yukio-Pegio Gunji
    • 1
  1. 1.Graduate School of Science and TechnologyKobe UniversityNada, KobeJapan
  2. 2.School of Electronics and Computer ScienceUniversity of SouthamptonUnited Kingdom

Personalised recommendations