A Unified Framework for Segmentation-Assisted Image Registration

  • Jundong Liu
  • Yang Wang
  • Junhong Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3852)


This paper presents a unified variational framework for seamlessly integrating prior segmentation information into non-rigid registration procedures. Under this framework, in addition to the forces arise from the similarity measure in seeking for detailed correspondence, another set of forces generated by the prior segmentation contours can provide an extra guidance in assisting the alignment process towards a more meaningful, stable and noise-tolerant procedure. Local correlation (LC) is being used as the underlying similarity measures to handle intensity variations. We present several 2D/3D examples on synthetic and real data.


Mutual Information Image Registration Local Correlation Variational Framework Medical Image Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pascal, C., Xavier, P.: Non-Rigid Registration by Gradient Descent on a Gaussian-Windowed Similarity Measure using Convolutions. In: Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, p. 182 (2000)Google Scholar
  2. 2.
    Chan, T., Vese, L.: An Active Contour Model without Edges. IEEE Trans. Image Processing 10(2), 266–277Google Scholar
  3. 3.
    Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Ang P.S., Marchal, G.: Automated multimodality image registration using information theory. In: Proc. IPMI, pp. 263–274 (1995)Google Scholar
  4. 4.
    Roche, A., Malandain, G., Pennec, X., Ayache, N.: Multimodal Image Registration by Maximization of the Correlation Ratio. Research Report RR-3378, INRIA (August 1998)Google Scholar
  5. 5.
    Russakoff, D.B., Tomasi, C., Rohlfing, T., Maurer Jr., C.R.: Image Similarity Using mutual information of Regions. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 596–607. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical Image Analysis 2(3), 243–260 (1998)CrossRefGoogle Scholar
  7. 7.
    Zhang, T., Freedman, D.: Tracking Objects Using Density Matching and Shape Priors. In: ICCV 2003, vol. 2, pp. 1056–1062 (2003)Google Scholar
  8. 8.
    Leventon, M., Grimson, W.E.L.: Multi-modal volume registration using joint intensity distributions. In: MICCAI 1999 (1999)Google Scholar
  9. 9.
    Liu, J., Liu, J.: Artifacts Reduction in Mutual Information-based Image Registration using Prior Information. In: The International conference on Image Processing (ICIP 2003), Barcelona, Spain, September 14-17 (2003)Google Scholar
  10. 10.
    Maintz, J.B., Viergever, M.A.: A Survey of Medical Image Registration. MedIA 2, 1–36 (1998)Google Scholar
  11. 11.
    Meyer, C., et al.: Demonstration of Accuracy and Clinical Versatitlity of Mutual Information for Automatic Multimodality Image Fusion using Affine and Thin-plate Spline-warped Geometric Deformation. Medical Image Analysis 1, 195–206 (1997)CrossRefGoogle Scholar
  12. 12.
    Netsch, T., et al.: Towards Real-Time Multi-Modality 3D Medical Image Registration. In: ICCV 2001, pp. 718–725 (2001)Google Scholar
  13. 13.
    Wyatt, P.P., Noble, J.A.: MAP MRF joint segmentation and registration of medical images. Medical Image Analysis 7, 539–552 (2003)CrossRefGoogle Scholar
  14. 14.
    Pluim, J.P., Maintz, J.B., Viergever, M.A.: Image registration by maximization of combined mutual information and gradient information. IEEE Trans Med Imaging 19(8), 809–814 (2000)CrossRefGoogle Scholar
  15. 15.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using Free-Form Deformations: Application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  16. 16.
    Tsai, A., Yezzi, A.J., Willsky, A.: A Curve Evolution Approach to Smoothing and Segmentation Using the Mumford-Shah Functional. In: CVPR 2000, pp. 1119–1124 (2000)Google Scholar
  17. 17.
    Studholme, C., Hill, D., Hawkes, D.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition 32, 71–86 (1999)CrossRefGoogle Scholar
  18. 18.
    Unal, G., Slabaugh, G., Yezzi, A., Tyan, J.: Joint segmentation and non-rigid registration without shape priors, Siemens Technical Report SCR-04-TR-7495 (2004)Google Scholar
  19. 19.
    Unal, G., Slaaugh, G.: Coupled PDEs for Non-Rigid Registration and Segmentation. In: CVPR 2005, San Diego, CA (2005)Google Scholar
  20. 20.
    Vemuri, B., Ye, J., Chen, Y., Leonard, C.: Image registration via level-set motion: applications to atlas-based segmentation. Medical Image Analysis 7(1), 1–20 (2003)CrossRefGoogle Scholar
  21. 21.
    Viola, P.A., Wells, W.M.: Alignment by maximization of mutual information. In: Fifth ICCV, pp. 16–23. MIT, Cambridge (1995)Google Scholar
  22. 22.
    Wang, Y., Staib, L.H.: Physical model-based non-rigid registration incorporating statistical shape information. Medical Image Analysis 4(1), 7–20 (2000)CrossRefGoogle Scholar
  23. 23.
    Jürgen, W., Peter, R., Thomas, N., Marcel, B.T.Q.: Gray-Value Based Registration of CT and MR Images by Maximization of Local Correlation. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 656–663. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  24. 24.
    Wells III, W.M., Viola, P., Atsumi, H.: Multi-modal Volume Registration by Maximization of Mutual Information. Medical Image Analysis 1(1), 35–51 (1997)CrossRefGoogle Scholar
  25. 25.
    Yezzi, A., Zollei, L., Kapur, T.: A Variational Framework for Joint Segmentation and Registration. Medical Image Analysis, 171–185 (June 2003)Google Scholar
  26. 26.
    Sussman, M., Smereka, P., Osher, S.: A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow. Journal of Computational Physics 114, 146–159 (1994)MATHCrossRefGoogle Scholar
  27. 27.
    Vemuri, B., Chen, Y., Wang, Z.: Registration Assisted Image Smoothing and Segmentation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 546–559. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jundong Liu
    • 1
  • Yang Wang
    • 1
  • Junhong Liu
    • 2
  1. 1.School of Electrical Engineering and Computer ScienceOhio UniversityAthensUSA
  2. 2.Nokia Inc.IrvingUSA

Personalised recommendations