Advertisement

Shape Orientability

  • Joviša Žunić
  • Paul L. Rosin
  • Lazar Kopanja
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3852)

Abstract

In this paper we consider some questions related to the orientation of shapes. We introduce as a new shape feature shape orientability, i.e. the degree to which a shape has distinct (but not necessarily unique) orientation. A new method is described for measuring shape orientability, and has several desirable properties. In particular, unlike the standard moment based measure of elongation, it is able to differentiate between the varying levels of orientability of n-fold rotationally symmetric shapes.

Keywords

Shape Descriptor Symmetric Shape Disc Position Shape Orientation Discrete Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cortadellas, J., Amat, J., de la Torre, F.: Robust Normalization of Silhouettes for Recognition Application. Patt. Rec. Lett. 25, 591–601 (2004)CrossRefGoogle Scholar
  2. 2.
    Freeman, H., Shapira, R.: Determining the Minimum-Area Encasing Rectangle for an Arbitrary Closed Curve. Comm. of the ACM 18, 409–413 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Horn, B.K.P.: Robot Vision. MIT Press, Cambridge (1986)Google Scholar
  4. 4.
    Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill, New York (1995)Google Scholar
  5. 5.
    Klette, R., Žunić, J.: Digital approximation of moments of convex regions. Graphical Models and Image Processing 61, 274–298 (1999)CrossRefGoogle Scholar
  6. 6.
    Palmer, S.E.: Vision Science: Photons to Phenomenology. MIT Press, Cambridge (1999)Google Scholar
  7. 7.
    Preparata, F.P., Shamos, M.I.: Computational Geometry. Springer, Heidelberg (1985)Google Scholar
  8. 8.
    Toussaint, G.T.: Solving geometric problems with the rotating calipers. In: Proc. IEEE MELECON 1983, pp. A10.02/1–4 (1983)Google Scholar
  9. 9.
    Tsai, W.H., Chou, S.L.: Detection of Generalized Principal Axes in Rotationally Symmetric Shapes. Patt. Rec. 24, 95–104 (1991)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Žunić, J., Rosin, P.L.: A New Convexity Measurement for Polygons. IEEE Trans. PAMI 26(7), 923–934 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joviša Žunić
    • 1
  • Paul L. Rosin
    • 2
  • Lazar Kopanja
    • 3
  1. 1.Computer Science DepartmentExeter UniversityExeterUK
  2. 2.School of Computer ScienceCardiff UniversityCardiffUK
  3. 3.Department of Mathematics and InformaticsNovi Sad UniversityNovi SadSerbia and Montenegro

Personalised recommendations