Advertisement

Super-Resolved Video Mosaicing for Documents Based on Extrinsic Camera Parameter Estimation

  • Akihiko Iketani
  • Tomokazu Sato
  • Sei Ikeda
  • Masayuki Kanbara
  • Noboru Nakajima
  • Naokazu Yokoya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3852)

Abstract

This paper describes a novel video mosaicing method based on extrinsic camera parameter estimation. With our method, a mosaic image without perspective distortion can be generated, even if none of the input image plane is parallel to the target document. Thus, users no longer have to take special care in holding the camera so that the image plane in the reference frame is parallel to the target. First, extrinsic camera parameters are estimated by tracking image features. Next, by utilizing re-appearing features, estimated extrinsic camera parameters are globally optimized to minimize the estimation error in the whole input sequence. Finally, all the images are projected onto the mosaic image plane, and a super-resolved mosaic image is generated by applying an iterative back projection algorithm. Experiments have successfully demonstrated the feasibility of the proposed method.

Keywords

Input Image Camera Parameter Bundle Adjustment Mosaic Image Average Distortion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Szeliski, R.: Image Mosaicing for Tele-Reality Applications. In: Proc. IEEE Workshop on Applications of Computer Vision, pp. 230–236 (1994)Google Scholar
  2. 2.
    Chiba, N., Kano, H., Higashihara, M., Yasuda, M., Osumi, M.: Feature-based Image Mosaicing. In: Proc. IAPR Workshop on Machine Vision Applications, pp. 5–10 (1998)Google Scholar
  3. 3.
    Takeuchi, S., Shibuichi, D., Terashima, N., Tominaga, H.: Adaptive Resolution Image Acquisition Using Image Mosaicing Technique from Video Sequence. In: Proc. IEEE Int. Conf. on Image Processing, vol. 1, pp. 220–223 (2000)Google Scholar
  4. 4.
    Hsu, C.T., Cheng, T.H., Beuker, R.A., Hong, J.K.: Feature-based Video Mosaic. In: Proc. IEEE Int. Conf. on Image Processing, vol. 2, pp. 887–890 (2000)Google Scholar
  5. 5.
    Lhuillier, M., Quan, L., Shum, H., Tsui, H.T.: Relief Mosaics by Joint View Triangulation. In: Proc. IEEE Int. Conf. on ComputerVision and Pattern Recognition, vol. 1, pp. 785–790 (2001)Google Scholar
  6. 6.
    McLauchlan, P.F., Jaenicke, A.: Image Mosaicing Using Sequential Bundle Adjustment. Image and Vision Computing 20, 751–759 (2002)CrossRefGoogle Scholar
  7. 7.
    Kim, D.W., Hong, K.S.: Fast Global Registration for Image Mosaicing. In: Proc. IEEE Int. Conf. on Image Processing, vol. 2, pp. 295–298 (2003)Google Scholar
  8. 8.
    Tomasi, C., Kanade, T.: Shape and Motion from Image Streams under Orthography: A factorization method. Int. J. on Computer Vision 9(2), 137–154 (1992)CrossRefGoogle Scholar
  9. 9.
    Sato, T., Kanbara, M., Yokoya, N., Takemura, H.: Dense 3-D Reconstruction of an Outdoor Scene by Hundreds-baseline Stereo Using a Hand-held Video Camera. Int. Jour. of Computer Vision 47(1-3), 119–129 (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Harris, C., Stephens, M.: A Combined Corner and Edge Detector. In: Proc. Alvey Vision Conf., pp. 147–151 (1988)Google Scholar
  11. 11.
    Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle Adjustment - A Modern Synthesis. Vision Algorithms: Theory and Practice, 298–375 (2000)Google Scholar
  13. 13.
    Irani, M., Peleg, S.: Improving Resolution by Image Registration. CVGIP: Graphical Models and Image Processing 53(3), 231–239 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Akihiko Iketani
    • 1
  • Tomokazu Sato
    • 1
    • 2
  • Sei Ikeda
    • 2
  • Masayuki Kanbara
    • 1
    • 2
  • Noboru Nakajima
    • 1
  • Naokazu Yokoya
    • 1
    • 2
  1. 1.NEC CorporationNaraJapan
  2. 2.Nara Institute of Science and TechnologyNaraJapan

Personalised recommendations