Incremental Mesh-based Integration of Registered Range Images: Robust to Registration Error and Scanning Noise

  • Hong Zhou
  • Yonghuai Liu
  • Longzhuang Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3851)


Existing integration algorithms often assume that the registration error of neighbouring views is an order of magnitude less than the measurement error [3]. This assumption is very restrictive that automatic registration algorithms can hardly meet. In this paper, we develop a novel integration algorithm, robust to both large registration errors and heavy scanning noise. Firstly, a pre-processing procedure is developed to automatically triangulate a single range image and remove noisy triangles. Secondly, we shift points along their orientations by the projection of their resulting correspondence vectors so that new correspondences can approach together, leading large registration errors to be compensated. Thirdly, overlapping areas between neighbouring views are detected and integrated, considering the confidence of triangles, which is a function of the including angle between the centroid point vector of a triangle and its normal vector. The outcome of integration is a set of disconnected triangles where gaps are caused by the removal of overlapping triangles with low confidence. Fourthly, the disconnected triangles are connected based on the principle of maximizing interior angles. Since the created triangular mesh is not necessarily smooth, finally, we minimize the weighted orientation variation. The experimental results based on real images show that the proposed algorithm significantly outperforms an existing algorithm and is robust to both registration error and scanning noise.


Triangular Mesh Range Image Integration Algorithm Registration Error Integration Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreetto, M., Brusco, N., Cortelazzo, G.M.: Automatic 3D modelling of textured cultural heritage objects. IEEE Trans. Image Processing 13, 354–369 (2004)CrossRefGoogle Scholar
  2. 2.
    Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proc. SIGGRAPH, pp. 303–312 (1996)Google Scholar
  3. 3.
    Hilton, A., Illingworth, J.: Geometric fusion for a hand-held 3D sensor. Machine Vision and Applications 12, 44–51 (2000)CrossRefGoogle Scholar
  4. 4.
    Jaynes, E.T.: Information theory and statistical mechanics. The Physical Review 106, 620–630 (1957)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Liu, Y., Li, L., Wei, B.: 3D shape matching using collinearity constraint. In: Proc. ICRA, pp. 2285–2290 (2004)Google Scholar
  6. 6.
    Oblonsek, C., Guid, N.: A fast surface-based procedure for object reconstruction from 3-D scattered points. CVIU 69, 185–195 (1998)Google Scholar
  7. 7.
    Rusinkiewicz, S., Hall-Holt, O., Levoy, M.: Real-time 3D model acquisition. In: Proc. SIGGRAPH, pp. 438–446 (2002)Google Scholar
  8. 8.
    Sun, Y., Dumont, C.: Mesh-based integration of range and color images. In: Proc. of SPIE, vol. 4051, pp. 110–117 (2000)Google Scholar
  9. 9.
    Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: Proc. SIGGRAPH, pp. 311–318 (1994)Google Scholar
  10. 10.
    Taubin, G.: A signal processing approach for fair surface design. In: Proc. SIGGRAPH, pp. 351–358 (1995)Google Scholar
  11. 11.
    Vollmer, J., Mencl, R., Muller, H.: Improved Laplacian smoothing of noisy surface meshes. In: Proc. Eurographics, pp. 131–138 (1999)Google Scholar
  12. 12.
    Wong, S.S., Chan, K.L.: Multi-view 3D model reconstruction: exploitation of color homogeneity in voxel mask. In: Proc. ICIG, pp. 146–149 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hong Zhou
    • 1
  • Yonghuai Liu
    • 1
  • Longzhuang Li
    • 2
  1. 1.Department of Computer ScienceUniversity of WalesAberystwyth, CeredigionUK
  2. 2.Department of Computer ScienceTexas A and M UniversityCorpus ChristiUSA

Personalised recommendations