Complexity and Exact Algorithms for Multicut

  • Jiong Guo
  • Falk Hüffner
  • Erhan Kenar
  • Rolf Niedermeier
  • Johannes Uhlmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3831)

Abstract

The Multicut problem is defined as: given an undirected graph and a collection of pairs of terminal vertices, find a minimum set of edges or vertices whose removal disconnects each pair. We mainly focus on the case of removing vertices, where we distinguish between allowing or disallowing the removal of terminal vertices. Complementing and refining previous results from the literature, we provide several NP-completeness and (fixed-parameter) tractability results for restricted classes of graphs such as trees, interval graphs, and graphs of bounded treewidth.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Booth, K.S., Lueker, G.S.: Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms. Journal of Computer and System Sciences 13, 335–379 (1976)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Costa, M., Létocart, L., Roupin, F.: Minimal Multicut and Maximal Integer Multiflow: a Survey. European Journal of Operational Research 162(1), 55–69 (2005)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Călinescu, G., Fernandes, C.G., Reed, B.: Multicuts in Unweighted Graphs and Digraphs with Bounded Degree and Bounded Tree-Width. Journal of Algorithms 48, 333–359 (2003)MATHCrossRefGoogle Scholar
  4. 4.
    Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The Complexity of Multiterminal Cuts. SIAM Journal on Computing 23(4), 864–894 (1994)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Erdős, P.L., Székely, L.A.: Evolutionary Trees: an Integer Multicommodity Max-Flow–Min-Cut Theorem. Advances in Applied Mathematics 13, 375–389 (1992)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Garg, N., Vazirani, V., Yannakakis, M.: Primal-Dual Approximation Algorithms for Integral Flow and Multicut in Trees. Algorithmica 18(1), 3–20 (1997)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Guo, J., Niedermeier, R.: Exact Algorithms and Applications for Tree-Like Weighted Set Cover. To appear in Journal of Discrete Algorithms (2005)Google Scholar
  8. 8.
    Guo, J., Niedermeier, R.: Fixed-Parameter Tractability and Data Reduction for Multicut in Trees. Networks 46(3), 124–135 (2005)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Marx, D.: Parameterized Graph Separation Problems. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 71–82. Springer, Heidelberg (2004); Long version to appear in Theoretical Computer ScienceCrossRefGoogle Scholar
  10. 10.
    Veinott, A.F., Wagner, H.M.: Optimal Capacity Scheduling. Operations Research 10, 518–532 (1962)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jiong Guo
    • 1
  • Falk Hüffner
    • 1
  • Erhan Kenar
    • 2
  • Rolf Niedermeier
    • 1
  • Johannes Uhlmann
    • 2
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Wilhelm-Schickard-Institut für InformatikUniversität TübingenTübingenGermany

Personalised recommendations