Oriented Coloring: Complexity and Approximation

  • Jean-François Culus
  • Marc Demange
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3831)

Abstract

This paper is devoted to an oriented coloring problem motivated by a task assignment model. A recent result established the NP-completeness of deciding whether a digraph is k-oriented colorable; we extend this result to the classes of bipartite digraphs and circuit-free digraphs. Finally, we investigate the approximation of this problem: both positive and negative results are devised.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Demange, M., Ekim, T., de Werra, D.: On the Approximation of Min Split-Coloring and Min Cocoloring (manuscript)Google Scholar
  2. 2.
    Demange, M., Grisoni, P., Paschos, V.T.: Differential Approximation Algorithms for Some Combinatorial Optimization Problems. Theoretical Computer Science 209, 107–122 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Duh, R., Fürer, M.: Approximation of k-Set Cover by Semi-Local Optimization. In: Proc. of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pp. 256–264 (1997)Google Scholar
  4. 4.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New YorkGoogle Scholar
  5. 5.
    Halldórsson, M.M.: A Still Better Performance Quarantee for Approximate Graph Coloring. Information Processing Letters 45, 19–23 (1993)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hassin, R., Khuller, S.: z-Approximations. Journal of Algorithms 41, 429–442 (2001)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hassin, R., Lahav, S.: Maximizing the Number of Unused Colors in the Vertex Coloring Problem. Information Processing Letters 52, 87–90 (1994)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hell, P., Nesetril, J.: On the Complexity of h-Coloring. Journal of Combinatorial Theory (B) 18, 92–110 (1990)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hell, P., Nesetril, J.: Graphs and Homomorphisms. Oxford Lecture Series in Mathematics and its Applications (2004)Google Scholar
  10. 10.
    Johnson, D.S.: Approximation Algorithms for Combinatorial Problems. Journal of Computer and System Sciences 9, 256–278 (1974)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Kierstead, H.A., Trotter, W.T.: Competitive Colorings of Oriented Graphs. Electronic Journal of Combinatorics 8 (2001)Google Scholar
  12. 12.
    Klostermeyer, W.F., MacGillivray, G.: Homomorphisms and Oriented Colorings of Equivalence Classes of Oriented Graphs. Discrete Mathematics 274, 161–172 (2004)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Nesetril, J., Sopena, E.: On the Oriented Game Chromatic Number. The Electronic Journal of Combinatorics 8(2), R14 (2001)MathSciNetGoogle Scholar
  14. 14.
    Nesetril, J., Sopena, E., Vignal, L.: t-Preserving Homomorphisms of Oriented Graphs. Comment. Math. Univ. Carolinae 38(1), 125–136 (1997)MATHMathSciNetGoogle Scholar
  15. 15.
    Sopena, E.: Computing Chromatic Polynomials of Oriented Graphs. In: Proc. Formal power series and Algebraic Combinatorics. DIMACS, pp. 413–422 (1994)Google Scholar
  16. 16.
    Sopena, E.: Oriented Graph Coloring. Discrete Mathematics 229 (2001)Google Scholar
  17. 17.
    Wood, D.R.: Acyclic, Star and Oriented Colorings of Graph Subdivisions (2005) (submitted)Google Scholar
  18. 18.
    Zemel, E.: Measuring the Quality of Approximate Solutions to Zero-One Programming Problems. Mathematics of Operations Research 6, 319–332 (1981)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jean-François Culus
    • 1
  • Marc Demange
    • 2
  1. 1.UTM, équipe Grimm – SMASHToulouseFrance
  2. 2.département SID Avenue Bernard HIRSHESSECCergy PontoiseFrance

Personalised recommendations