Oriented Coloring: Complexity and Approximation

  • Jean-François Culus
  • Marc Demange
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3831)


This paper is devoted to an oriented coloring problem motivated by a task assignment model. A recent result established the NP-completeness of deciding whether a digraph is k-oriented colorable; we extend this result to the classes of bipartite digraphs and circuit-free digraphs. Finally, we investigate the approximation of this problem: both positive and negative results are devised.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Demange, M., Ekim, T., de Werra, D.: On the Approximation of Min Split-Coloring and Min Cocoloring (manuscript)Google Scholar
  2. 2.
    Demange, M., Grisoni, P., Paschos, V.T.: Differential Approximation Algorithms for Some Combinatorial Optimization Problems. Theoretical Computer Science 209, 107–122 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Duh, R., Fürer, M.: Approximation of k-Set Cover by Semi-Local Optimization. In: Proc. of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pp. 256–264 (1997)Google Scholar
  4. 4.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New YorkGoogle Scholar
  5. 5.
    Halldórsson, M.M.: A Still Better Performance Quarantee for Approximate Graph Coloring. Information Processing Letters 45, 19–23 (1993)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hassin, R., Khuller, S.: z-Approximations. Journal of Algorithms 41, 429–442 (2001)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hassin, R., Lahav, S.: Maximizing the Number of Unused Colors in the Vertex Coloring Problem. Information Processing Letters 52, 87–90 (1994)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hell, P., Nesetril, J.: On the Complexity of h-Coloring. Journal of Combinatorial Theory (B) 18, 92–110 (1990)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hell, P., Nesetril, J.: Graphs and Homomorphisms. Oxford Lecture Series in Mathematics and its Applications (2004)Google Scholar
  10. 10.
    Johnson, D.S.: Approximation Algorithms for Combinatorial Problems. Journal of Computer and System Sciences 9, 256–278 (1974)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Kierstead, H.A., Trotter, W.T.: Competitive Colorings of Oriented Graphs. Electronic Journal of Combinatorics 8 (2001)Google Scholar
  12. 12.
    Klostermeyer, W.F., MacGillivray, G.: Homomorphisms and Oriented Colorings of Equivalence Classes of Oriented Graphs. Discrete Mathematics 274, 161–172 (2004)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Nesetril, J., Sopena, E.: On the Oriented Game Chromatic Number. The Electronic Journal of Combinatorics 8(2), R14 (2001)MathSciNetGoogle Scholar
  14. 14.
    Nesetril, J., Sopena, E., Vignal, L.: t-Preserving Homomorphisms of Oriented Graphs. Comment. Math. Univ. Carolinae 38(1), 125–136 (1997)MATHMathSciNetGoogle Scholar
  15. 15.
    Sopena, E.: Computing Chromatic Polynomials of Oriented Graphs. In: Proc. Formal power series and Algebraic Combinatorics. DIMACS, pp. 413–422 (1994)Google Scholar
  16. 16.
    Sopena, E.: Oriented Graph Coloring. Discrete Mathematics 229 (2001)Google Scholar
  17. 17.
    Wood, D.R.: Acyclic, Star and Oriented Colorings of Graph Subdivisions (2005) (submitted)Google Scholar
  18. 18.
    Zemel, E.: Measuring the Quality of Approximate Solutions to Zero-One Programming Problems. Mathematics of Operations Research 6, 319–332 (1981)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jean-François Culus
    • 1
  • Marc Demange
    • 2
  1. 1.UTM, équipe Grimm – SMASHToulouseFrance
  2. 2.département SID Avenue Bernard HIRSHESSECCergy PontoiseFrance

Personalised recommendations