A safety property restricts the set of reachable states. In this paper, we introduce a notion of relative safety which states that certain program states are reachable provided certain other states are. A key, but not exclusive, application of this method is in representing symmetry in a program. Here, we show that relative safety generalizes the programs that are presently accommodated by existing methods for symmetry. Finally, we provide a practical algorithm for proving relative safety.


Model Check State Graph Mutual Exclusion Safety Property Reachable State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M., Lamport, L.: An old-fashioned recipe for real time. ACM TOPLAS 16(5), 1543–1571 (1994)CrossRefGoogle Scholar
  2. 2.
    Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model checking. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 147–158. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Clarke, E.M., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic model checking. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 450–462. Springer, Heidelberg (1993)Google Scholar
  4. 4.
    Delzanno, G., Podelski, A.: Constraint-based deductive model checking. Int. J. STTT 3(3), 250–270 (2001)zbMATHGoogle Scholar
  5. 5.
    Du, X., Ramakrishnan, C.R., Smolka, S.A.: Tabled resolution + constraints: A recipe for model checking real-time systems. In: 21st RTSS, pp. 175–184. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  6. 6.
    Emerson, E.A.: From asymmetry to full symmetry: New techniques for symmetry reductions in model checking. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 142–156. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Emerson, E.A., Havlicek, J., Trefler, R.J.: Virtual symmetry reduction. In: 15th LICS, pp. 121–131. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  8. 8.
    Emerson, E.A., Sistla, A.P.: Model checking and symmetry. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 463–478. Springer, Heidelberg (1993)Google Scholar
  9. 9.
    Emerson, E.A., Sistla, A.P.: Utilizing symmetry when model-checking under fairness assumptions. ACM TOPLAS 19(4), 617–638 (1997)CrossRefGoogle Scholar
  10. 10.
    Fioravanti, F., Pettorossi, A., Proietti, M.: Verifying CTL properties of infinite-state systems by specializing constraint logic programs. In: Leuschel, M., Podelski, A., Ramakrishnan, C.R., Ultes-Nitsche, U. (eds.) 2nd VCL, pp. 85–96 (2001)Google Scholar
  11. 11.
    Fribourg, L.: Constraint logic programming applied to model checking. In: Bossi, A. (ed.) LOPSTR 1999. LNCS, vol. 1817, pp. 30–41. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Gupta, G., Pontelli, E.: A constraint-based approach for specification and verification of real-time systems. In: 18th RTSS, pp. 230–239. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  13. 13.
    Ip, C.N., Dill, D.L.: Better verification through symmetry. FMSD 9(1/2), 41–75 (1996)Google Scholar
  14. 14.
    Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. J. LP 19/20, 503–581 (1994)MathSciNetGoogle Scholar
  15. 15.
    Jaffar, J., Michaylov, S., Stuckey, P.J., Yap, R.H.C.: The CLP(\(\cal R\)) language and system. ACM TOPLAS 14(3), 339–395 (1992)CrossRefGoogle Scholar
  16. 16.
    Jaffar, J., Santosa, A., Voicu, R.: A CLP proof method for timed automata. In: 25th RTSS, pp. 175–186. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  17. 17.
    Leuschel, M., Massart, T.: Infinite-state model checking by abstract interpretation and program specialization. In: Bossi, A. (ed.) LOPSTR 1999. LNCS, vol. 1817, pp. 62–81. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Nilsson, U., Lübcke, J.: Constraint logic programming for local and symbolic model checking. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 384–398. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Ramakrishna, Y.S., Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A., Swift, T., Warren, D.S.: Efficient model checking using tabled resolution. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 143–154. Springer, Heidelberg (1997)Google Scholar
  20. 20.
    Sistla, A.P., Godefroid, P.: Symmetry and reduced symmetry in model checking. ACM TOPLAS 26(4), 702–734 (2004)CrossRefGoogle Scholar
  21. 21.
    Sistla, A.P., Gyuris, V., Emerson, E.A.: SMC: A symmetry-based model checker for verification of safety and liveness properties. ACM TOSEM 9(2), 133–166 (2000)CrossRefGoogle Scholar
  22. 22.
    Wang, F.: Efficient data structure for fully symbolic verification of real-time systems. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 157–171. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Weyl, H.: Symmetry. Princeton University Press, Princeton (1952)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Joxan Jaffar
    • 1
  • Andrew E. Santosa
    • 1
  • Răzvan Voicu
    • 1
  1. 1.School of ComputingNational University of SingaporeSingaporeRepublic of Singapore

Personalised recommendations