A Phase-Based Iris Recognition Algorithm

  • Kazuyuki Miyazawa
  • Koichi Ito
  • Takafumi Aoki
  • Koji Kobayashi
  • Hiroshi Nakajima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3832)

Abstract

This paper presents an efficient algorithm for iris recognition using phase-based image matching. The use of phase components in two-dimensional discrete Fourier transforms of iris images makes possible to achieve highly robust iris recognition with a simple matching algorithm. Experimental evaluation using the CASIA iris image database (ver. 1.0 and ver. 2.0) clearly demonstrates an efficient performance of the proposed algorithm.

Keywords

Image Database Iris Image Iris Recognition False Match Rate Normalize Iris Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wayman, J., Jain, A., Maltoni, D., Maio, D.: Biometric Systems. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Jain, A., Bolle, R., Pankanti, S.: Biometrics: Personal Identification in a Networked Society, Norwell, MA. Kluwer, Dordrecht (1999)Google Scholar
  3. 3.
    Daugman, J.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Analy. Machine Intell. 15, 1148–1161 (1993)CrossRefGoogle Scholar
  4. 4.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Efficient iris recognition by characterizing key local variations. IEEE Trans. Image Processing 13, 739–750 (2004)CrossRefGoogle Scholar
  5. 5.
    Boles, W., Boashash, B.: A human identification technique using images of the iris and wavelet transform. IEEE Trans. Signal Processing 46, 1185–1188 (1998)CrossRefGoogle Scholar
  6. 6.
    Tisse, C., Martin, L., Torres, L., Robert, M.: Person identification technique using human iris recognition. Proc. Vision Interface, 294–299 (2002)Google Scholar
  7. 7.
    Wildes, R.: Iris recognition: An emerging biometric technology. Proc. IEEE 85, 1348–1363 (1997)CrossRefGoogle Scholar
  8. 8.
    Kumar, B., Xie, C., Thornton, J.: Iris verification using correlation filters. In: Proc. 4th Int. Conf. Audio- and Video-based Biometric Person Authentication, pp. 697–705 (2003)Google Scholar
  9. 9.
    Kuglin, C.D., Hines, D.C.: The phase correlation image alignment method. In: Proc. Int. Conf. on Cybernetics and Society, pp. 163–165 (1975)Google Scholar
  10. 10.
    Takita, K., Aoki, T., Sasaki, Y., Higuchi, T., Kobayashi, K.: High-accuracy subpixel image registration based on phase-only correlation. IEICE Trans. Fundamentals E86-A, 1925–1934 (2003)Google Scholar
  11. 11.
    Takita, K., Muquit, M.A., Aoki, T., Higuchi, T.: A sub-pixel correspondence search technique for computer vision applications. IEICE Trans. Fundamentals E87-A, 1913–1923 (2004)Google Scholar
  12. 12.
    Ito, K., Nakajima, H., Kobayashi, K., Aoki, T., Higuchi, T.: A fingerprint matching algorithm using phase-only correlation. IEICE Trans. Fundamentals E87-A, 682–691 (2004)Google Scholar
  13. 13.
  14. 14.

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kazuyuki Miyazawa
    • 1
  • Koichi Ito
    • 1
  • Takafumi Aoki
    • 1
  • Koji Kobayashi
    • 2
  • Hiroshi Nakajima
    • 2
  1. 1.Graduate School of Information SciencesTohoku UniversitySendaiJapan
  2. 2.Yamatake CorporationIseharaJapan

Personalised recommendations