A New Approach to Fake Finger Detection Based on Skin Distortion

  • A. Antonelli
  • R. Cappelli
  • Dario Maio
  • Davide Maltoni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3832)


This work introduces a new approach for discriminating real fingers from fakes, based on the analysis of human skin elasticity. The user is required to move the finger once it touches the scanner surface, thus deliberately producing skin distortion. A multi-stage feature- extraction technique captures and processes the significant information from a sequence of frames acquired during the finger movement; this information is encoded as a sequence of DistortionCodes and further analyzed to determine the nature of the finger. The experimentation carried out on a database of real and fake fingers shows that the performance of the new approach is very promising.


Optical Flow Movement Vector Fingerprint Image Scanner Surface Latent Fingerprint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ratha, N.K., Connell, J.H., Bolle, R.M.: An analysis of minutiae matching strength. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 223–228. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Matsumoto, T., et al.: Impact of Artificial ‘Gummy’ Fingers on Fingerprint Systems. In: Proceedings of SPIE, January, vol. 4677 (2002)Google Scholar
  3. 3.
    Putte, T., Keuning, J.: Biometrical fingerprint recognition: don’t get your fingers burned. In: Proc. IFIP TC8/WG8.8, pp. 289–303 (2000)Google Scholar
  4. 4.
    Uludag, U., Jain, A.K.: Attacks on biometric systems: a case study in fingerprints. In: Proceedings of SPIE, June 2004. Security, Steganography, and Watermarking of Multimedia Contents VI, vol. 5306, pp. 622–633 (2004)Google Scholar
  5. 5.
    Derakhshani, R., Schuckers, S.A.C., Hornak, L.A., Gorman, L.O.: Determination of vitality from a non-invasive biomedical measurement for use in fingerprint scanners. Pattern Recognition 36, 383–396 (2003)CrossRefGoogle Scholar
  6. 6.
    Lapsley, P.D., Less, J.A., Pare Jr., D.F., Hoffman, N.: Anti-Fraud Biometric Sensor that Accurately Detects Blood Flow. SmartTouch, LLC, US Patent #5, 737,439Google Scholar
  7. 7.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  8. 8.
    Cappelli, R., Maio, D., Maltoni, D.: Modelling Plastic Distortion in Fingerprint Images. In: Singh, S., Murshed, N., Kropatsch, W.G. (eds.) ICAPR 2001. LNCS, vol. 2013, pp. 369–376. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Jain, A.K., Prabhakar, S., Hong, L.: A Multichannel Approach to Fingerprint Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 348–359 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • A. Antonelli
    • 1
  • R. Cappelli
    • 1
  • Dario Maio
    • 1
  • Davide Maltoni
    • 1
  1. 1.Biometric System Laboratory – DEISUniversity of BolognaCesenaItaly

Personalised recommendations