Information Fusion for Local Gabor Features Based Frontal Face Verification

  • Enrique Argones Rúa
  • Josef Kittler
  • Jose Luis Alba Castro
  • Daniel González Jiménez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3832)


We address the problem of fusion in a facial component approach to face verification. In our study the facial components are local image windows defined on a regular grid covering the face image. Gabor jets computed in each window provide face representation. A fusion architecture is proposed to combine the face verification evidence conveyed by each facial component. A novel modification of the linear discriminant analysis method is presented that improves fusion performance as well as providing a basis for feature selection. The potential of the method is demonstrated in experiments on the XM2VTS data base.


Feature Selection Face Image Training Image Information Fusion Facial Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Messer, K., Matas, J., Kittler, J., Luettin, J., Maître, G.: XM2VTSDB: The extended M2VTSDB. In: International Conference on Audio and Video-based Biometric Person Authentication (1999)Google Scholar
  2. 2.
    Luettin, J., Maître, G.: Evaluation protocol for the XM2FDB (Lausanne protocol). IDIAP Communication (1998)Google Scholar
  3. 3.
    Wiskott, L., Fellous, J.M., Kruger, N., von der Malsburg, C.: Face recognition by Elastic Bunch Graph Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 775–779 (1997)CrossRefGoogle Scholar
  4. 4.
    Kuncheva, L.I.: “Fuzzy” versus “Nonfuzzy” in combining classifiers designed by boosting. IEEE Transactions on Fuzzy Systems 11(6), 729–741 (2003)CrossRefGoogle Scholar
  5. 5.
    Silapachote, P., Karuppiah, D.R., Hanson, A.R.: Feature selection using AdaBoost for face expression recognition. In: Proceedings of the Fourth IASTED International Conference on Visualization, Imaging, and Image Processing, pp. 84–89 (2004)Google Scholar
  6. 6.
    Viola, P., Jones, M.: Robust Real-Time Face Detection. In: International Conference on Computer Vision (2001)Google Scholar
  7. 7.
    Heisele, B., Ho, P., Poggio, T.: Face Recognition with Support Vector Machines: Global versus Component-based Approach. In: International Conference on Computer Vision (2001)Google Scholar
  8. 8.
    Tefas, A., Kotropoulos, C., Pitas, I.: Face verification using elastic graph matching based on morphological signal decomposition. Signal Processing 82(6), 833–851 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Brunelli, R., Poggio, T.: Face Recognition: Features versus Templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(10), 1042–1052 (1993)CrossRefGoogle Scholar
  10. 10.
    Jonsson, K., Kittler, J., Li, Y.P., Matas, J.: Learning Support Vectors for Face Verification and Recognition. In: Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition (2000)Google Scholar
  11. 11.
    Sanderson, C., Paliwal, K.K.: Fast feature extraction method for robust face verification. Electronics Letters Online No: 20021186 (2002)Google Scholar
  12. 12.
    Saban, M., Sanderson, C.: On Local Features for Face Verification. IDIAP-RR 36 (2004)Google Scholar
  13. 13.
    Havran, C., Hupet, L., Czyz, J., Lee, J., Vandendorpe, L., Verleysen, M.: Independent Component Analysis for face authentication. Knowledge-Based Intelligent Information and Engineering Systems, 1207–1211 (2002)Google Scholar
  14. 14.
    Messer, K., Kittler, J., Sadeghi, M., Hamouz, M., Kostyn, A., Marcel, S., Bengio, S., Cardinaux, F., Sanderson, C., Poh, N., Rodriguez, Y., Kryszczuk, K., Czyz, J., Vandendorpe, L., Ng, J., Cheung, H., Tang, B.: Face Authentication Competition on the BANCA DatabaseGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Enrique Argones Rúa
    • 1
  • Josef Kittler
    • 2
  • Jose Luis Alba Castro
    • 1
  • Daniel González Jiménez
    • 1
  1. 1.Signal Theory Group, Signal Theory and Communications Dep.University of VigoSpain
  2. 2.Centre for Vision, Speech and Signal ProcessingUniversity of SurreyGuildfordUK

Personalised recommendations