Advertisement

RFID-Tags for Anti-counterfeiting

  • Pim Tuyls
  • Lejla Batina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3860)

Abstract

RFID-tags are becoming very popular tools for identification of products. As they have a small microchip on board, they offer functionality that can be used for security purposes. This chip functionality makes it possible to verify the authenticity of a product and hence to detect and prevent counterfeiting. In order to be successful for these security purposes too, RFID-tags have to be resistant against many attacks, in particular against cloning of the tag. In this paper, we investigate how an RFID-tag can be made unclonable by linking it inseparably to a Physical Unclonable Function (PUF). We present the security protocols that are needed for the detection of the authenticity of a product when it is equipped with such a system. We focus on off-line authentication because it is very attractive from a practical point of view. We show that a PUF based solution for RFID-tags is feasible in the off-line case.

Keywords

RFID counterfeiting authentication ECC Physical Unclonable Function (PUF) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weis, S.A., Juels, A.: Authenticating pervasive devices with human protocols. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Batina, L., Mentens, N., Preneel, B., Verbauwhede, I.: Side-channel aware design: Algorithms and architectures for elliptic curve cryptography over GF(2n). In: Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures, and Processors (ASAP 2005), Samos, Greece, July 23-15. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  3. 3.
    Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification and signature schemes. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Beth, T., Gollmann, D.: Algorithm engineering for public key algorithm. IEEE Journal on Selected Areas in Communications 7(4), 458–465 (1989)CrossRefGoogle Scholar
  5. 5.
    Blake, I., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. Mathematical Society Lecture Note Series. Cambridge University Press, London (1999)zbMATHGoogle Scholar
  6. 6.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong Key-Insulated Signature Schemes. In: Desmedt, Y. (ed.) PKC 2003. LNCS, vol. 2567, pp. 130–144. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Dodis, Y., Reyzin, M., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Gassend, B., et al.: Silicon physical unknown functions. In: Proc. 9th ACM Conference on Computer and Communications Security (November 2002)Google Scholar
  9. 9.
    Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled physical random functions. In: Proceedings of the 18th Annual Computer Security Conference (December 2002)Google Scholar
  10. 10.
    Johnson, D., Menezes, A.: The elliptic curve digital signature algorithm (ECDSA). Technical Report CORR 99-34, Department of Combinatorics & Optimization, University of Waterloo, Canada (February 24, 2000), http://www.cacr.math.uwaterloo.ca
  11. 11.
    Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Juels, A.: Strengthening EPC Tags against Cloning (March 2005) (manuscript)Google Scholar
  13. 13.
    Lenstra, A., Verheul, E.: Selecting cryptographic key sizes. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 446–465. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Linnartz, J.P., Tuyls, P.: New shielding functions to enhance privacy and prevent misuse of biometric templates. In: Kittler, J., Nixon, M. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 238–250. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    López, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2m). In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  17. 17.
    Montgomery, P.: Speeding the pollard and elliptic curve methods of factorization. Mathematics of Computation 48, 243–264 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Neve, M., Peeters, E., Samyde, D., Quisquater, J.-J.: Memories: a Survey of their Secure Uses in Smart Cards. In: 2nd International IEEE Security In Storage Workshop (IEEE SISW 2003), Washington DC, USA, pp. 62–72 (2003)Google Scholar
  19. 19.
    Skoric, B., Tuyls, P.: Secret key generation from classical physics, September 2005. Philips Research Book Series (2005)Google Scholar
  20. 20.
    Pappu, R.: Physical one-way functions. Science 297(6), 2026 (2002)CrossRefGoogle Scholar
  21. 21.
    Simmons, G.J.: Identification of data, devices, documents and individuals. In: Proc. 25th Ann. Intern. Carnahan Conference on Security Technology, Taipei, Taiwan, ROC, October 1–3, pp. 197–218. IEEE, Los Alamitos (1991)CrossRefGoogle Scholar
  22. 22.
    Skoric, B., Tuyls, P., Ophey, W.: Robust key extraction from physical unclonable functions. In: Ionnidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 407–422. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Tuyls, P., Goseling, J.: Capacity and examples of template protecting biometric authentication systems. In: Maltoni, D., Jain, A.K. (eds.) BioAW 2004. LNCS, vol. 3087, pp. 158–170. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Tuyls, P., Skoric, B., Stallinga, S., Akkermans, A.H.M., Ophey, W.: Information theoretical security analysis of physical unclonable functions. In: S. Patrick, A., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 141–155. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    van Dijk, M., Tuyls, P.: Robustness, reliability and security of biometric key distillation in the information theoretic setting. In: Cerf, N., Cardinal, J. (eds.) Proceedings of the 26th Benelux Symposium on Information Theory. Proceedings of the WIC, vol. 26 (2005)Google Scholar
  27. 27.
    Wolkerstorfer, J.: Scaling ECC Hardware to a Minimum. In: ECRYPT workshop - Cryptographic Advances in Secure Hardware - CRASH 2005 (September 6-7, 2005) (invited talk)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pim Tuyls
    • 1
  • Lejla Batina
    • 2
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands
  2. 2.Katholieke Universiteit Leuven, ESAT/COSICLeuven-HeverleeBelgium

Personalised recommendations