Advertisement

Chosen Ciphertext Secure Public Key Threshold Encryption Without Random Oracles

  • Dan Boneh
  • Xavier Boyen
  • Shai Halevi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3860)

Abstract

We present a non-interactive chosen ciphertext secure threshold encryption system. The proof of security is set in the standard model and does not use random oracles. Our construction uses the recent identity based encryption system of Boneh and Boyen and the chosen ciphertext secure construction of Canetti, Halevi, and Katz.

Keywords

Signature Scheme Random Oracle Identity Base Encryption Challenge Ciphertext Choose Ciphertext Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M.: Robust distributed multiplication without interaction. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 130–147. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, p. 83. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X.: Efficient selective-ID identity based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using identity based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 87–103. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-based techniques. In: ACM Conference on Computer and Communications Security—CCS 2005, ACM Press, New York (2005); Full version available at http://eprint.iacr.org/2005/288
  8. 8.
    Canetti, R., Goldwasser, S.: An efficient threshold public key cryptosystem secure against adaptive chosen ciphertext attack. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 90–106. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal of Computing 33, 167–226 (2003); Extended abstract in Crypto 1998Google Scholar
  12. 12.
    Damgard, I., Fazio, N., Nicolosi, A.: Secret-key zero-knowledge protocols for NP and applications to threshold cryptography (2004) (manuscript)Google Scholar
  13. 13.
    DeSantis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely. In: Proceedings of STOC 1994, pp. 522–533 (1994)Google Scholar
  14. 14.
    Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)Google Scholar
  15. 15.
    Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Frankel, Y.: A practical protocol for large group oriented networks. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 56–61. Springer, Heidelberg (1990)Google Scholar
  17. 17.
    Frankel, Y., Gemmell, P., MacKenzie, P., Yung, M.: Optimal resilience proactive public key cryptosystems. In: Proceedings of FOCS 1997, pp. 384–393 (1997)Google Scholar
  18. 18.
    Frankel, Y., Gemmell, P., Yung, M.: Witness-based cryptographic program checking. In: Proceedings of STOC 1996, pp. 499–508 (1996)Google Scholar
  19. 19.
    Gemmel, P.: An introduction to threshold cryptography. RSA CryptoBytes 2(3), 7–12 (1997)Google Scholar
  20. 20.
    Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidelberg (1999)Google Scholar
  21. 21.
    Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)Google Scholar
  22. 22.
    Gennaro, R., Rabin, T., Jarecki, S., Krawczyk, H.: Robust and efficient sharing of RSA functions. J. Cryptology 13(2), 273–300 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Computing 17(2), 281–308 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing, or how to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995)Google Scholar
  25. 25.
    Jarecki, S., Lysyanskaya, A.: Adaptively secure threshold cryptography: introducing concurrency, removing erasures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 221–242. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  26. 26.
    Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  27. 27.
    Joux, A., Nguyen, K.: Separating decision Diffie-Hellman from Diffie-Hellman in cryptographic groups. Journal of Cryptology 16(4), 239–247 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004)Google Scholar
  29. 29.
    MacKenzie, P.: An efficient two-party public key cryptosystem secure against adaptive chosen ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 47–61. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. 30.
    Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: Proceedings of PODC 1991, pp. 51–61 (1991)Google Scholar
  31. 31.
    Pederson, T.: A threshold cryptosystem without a trusted party. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991)Google Scholar
  32. 32.
    Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairings. In: Proceedings of the Symposium on Cryptography and Information Security—SCIS 2000, Japan (2000)Google Scholar
  33. 33.
    Shoup, V., Cramer, R.: Universal hash proofs and a paradigm for chosen ciphertext secure public key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, p. 45. Springer, Heidelberg (2002)Google Scholar
  34. 34.
    Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. Journal of Cryptology 15(2), 75–96 (2002); Extended abstract in Eurocrypt 1998Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dan Boneh
    • 1
  • Xavier Boyen
    • 2
  • Shai Halevi
    • 3
  1. 1.Stanford UniversityStanford
  2. 2.Voltage SecurityPalo Alto
  3. 3.IBM, T.J. Watson

Personalised recommendations