Advertisement

Workload Analysis of a Cluster in a Grid Environment

  • Emmanuel Medernach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3834)

Abstract

With Grids, we are able to share computing resources and to provide for scientific communities a global transparent access to local facilities. In such an environment the problems of fair resource sharing and best usage arise. In this paper, the analysis of the LPC cluster usage (Laboratoire de Physique Corpusculaire, Clermont-Ferrand, France) in the EGEE Grid environment is done, and from the results a model for job arrival is proposed.

Keywords

Interarrival Time Grid Environment Grid Service Resource Broker Workload Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feitelson, D.G.: Workload modeling for performance evaluation. In: Calzarossa, M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 114–141. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    England, D., Weissman, J.B.: Costs and benefits of load sharing in the computational grid. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004. LNCS, vol. 3277, pp. 160–175. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Garey, M., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  4. 4.
    Mertens, S.: The easiest hard problem: Number partitioning. In: Percus, A.G., Istrate, G., Moore, C. (eds.) Computational Complexity and Statistical Physics, New York. Oxford University Press, Oxford (2004)Google Scholar
  5. 5.
    Feitelson, D.G., Rudolph, L.: Parallel job scheduling: Issues and approaches. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 1–18. Springer, Heidelberg (1995)Google Scholar
  6. 6.
    Jackson, D., Snell, Q., Clement, M.: Core algorithms of the Maui scheduler. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Bode, B., Halstead, D.M., Kendall, R., Lei, Z.: The Portable Batch Scheduler and the Maui Scheduler on Linux Clusters, USENIX Association. In: 4th Annual Linux Showcase Conference (2000)Google Scholar
  8. 8.
    Agostinelli, S., et al.: Geant 4 (GEometry ANd Tracking): a Simulation toolkit. In: Nuclear Instruments and Methods in Physics Research, pp. 250–303 (2003)Google Scholar
  9. 9.
    Foster, I., Kesselman, C.: Globus: A metacomputing infrastructure toolkit. The International Journal of Supercomputer Applications and High Performance Computing 11(2), 115–128 (summer 1997)CrossRefGoogle Scholar
  10. 10.
    EGEE Design Team. EGEE middleware architecture, EGEE-DJRA1.1-476451-v1.0 (August 2004), Also available as https://edms.cern.ch/document/476451/1.0
  11. 11.
    Zotkin, D., Keleher, P.J.: Job-length estimation and performance in backfilling schedulers. In: HPDC (1999)Google Scholar
  12. 12.
    Peris, A.D., Lorenzo, P.M., Donno, F., Sciabà, A., Campana, S., Santinelli, R.: LCG User guide (2004)Google Scholar
  13. 13.
    Avellino, G., Beco, S., Cantalupo, B., Maraschini, A., Pacini, F., Sottilaro, M., Terracina, A., Colling, D., Giacomini, F., Ronchieri, E., Gianelle, A., Peluso, R., Sgaravatto, M., Guarise, A., Piro, R., Werbrouck, A., Kouřil, D., Křenek, A., Matyska, L., Mulač, M., Pospíšil, J., Ruda, M., Salvet, Z., Sitera, J., Škrabal, J., Vocū, M., Mezzadri, M., Prelz, F., Monforte, S., Pappalardo, M.: The datagrid workload management system: Challenges and results. Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  14. 14.
    Feitelson, D.G., Rudolph, L.: Toward convergence in job schedulers for parallel supercomputers. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1996 and JSSPP 1996. LNCS, vol. 1162, pp. 1–26. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  15. 15.
    Chiang, S.-H., Arpaci-Dusseau, A., Vernon, M.K.: The impact of more accurate requested runtimes on production job scheduling performance. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 103–127. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Calzarossa, M., Serazzi, G.: Workload characterization: A survey. Proc. IEEE 81(8), 1136–1150 (1993)CrossRefGoogle Scholar
  17. 17.
    Chapin, S.J., Cirne, W., Feitelson, D.G., Jones, J.P., Leutenegger, S.T., Schwiegelshohn, U., Smith, W., Talby, D.: Benchmarks and standards for the evaluation of parallel job schedulers. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1999, IPPS-WS 1999, and SPDP-WS 1999. LNCS, vol. 1659, pp. 67–90. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Cirne, W., Berman, F.: A comprehensive model of the supercomputer workload (2001)Google Scholar
  19. 19.
    Downey, A.B., Feitelson, D.G.: The elusive goal of workload characterization. Perf. Eval. Rev. 26(4), 14–29 (1999)CrossRefGoogle Scholar
  20. 20.
    Feitelson, D.G., Nitzberg, B.: Job characteristics of a production parallel scientific workload on the NASA Ames iPSC/860. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 337–360. Springer, Heidelberg (1995)Google Scholar
  21. 21.
    Paxson, V., Floyd, S.: Wide area traffic: the failure of Poisson modeling. IEEE/ACM Transactions on Networking 3(3), 226–244 (1995)CrossRefGoogle Scholar
  22. 22.
    Li, H., Groep, D., Wolters, L.: Workload characteristics of a multi-cluster supercomputer. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004. LNCS, vol. 3277, pp. 176–193. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Kelsey, R., Clinger, W., Rees, J. (eds.): Revised5 report on the algorithmic language Scheme. ACM SIGPLAN Notices 33(9), 26–76 (1998)CrossRefGoogle Scholar
  24. 24.
    Feitelson, D.G.: Metrics for parallel job scheduling and their convergence. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 188–205. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Jann, J., Pattnaik, P., Franke, H., Wang, F., Skovira, J., Riodan, J.: Modeling of workload in MPPs. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1997 and JSSPP 1997. LNCS, vol. 1291, pp. 95–116. Springer, Heidelberg (1997)Google Scholar
  26. 26.
    Talby, D., Feitelson, D.G., Raveh, A.: Comparing logs and models of parallel workloads using the co-plot method. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1999, IPPS-WS 1999, and SPDP-WS 1999. LNCS, vol. 1659, pp. 43–66. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  27. 27.
    Azar, Y., Kalyansasundaram, B., Plotkin, S.A., Pruhs, K., Waarts, O.: On-line load balancing of temporary tasks. J. Algorithms 22(1), 93–110 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Azar, Y., Broder, A.Z., Karlin, A.R.: On-line load balancing. Theoretical Computer Science 130(1), 73–84 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Bar-Noy, A., Freund, A., Naor, J.: New algorithms for related machines with temporary jobs. In: Burke, E.K. (ed.) Journal of Scheduling, pp. 259–272. Springer, Heidelberg (2000)Google Scholar
  30. 30.
    Lam, T.-W., Ting, H.-F., To, K.-K., Wong, W.-H.: On-line load balancing of temporary tasks revisited. Theoretical Computer Science 270(1–2), 325–340 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Andrade, N., Cirne, W., Brasileiro, F., Roisenberg, P.: OurGrid: An approach to easily assemble grids with equitable resource sharing. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 61–86. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  32. 32.
    EGEE Design Team, Design of the EGEE middleware grid services. EGEE JRA1 (2004), Also available as https://edms.cern.ch/document/487871/1.0

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Emmanuel Medernach
    • 1
  1. 1.Laboratoire de Physique Corpusculaire, CNRS-IN2P3AubièreFrance

Personalised recommendations