Learning Stochastic Finite Automata for Musical Style Recognition

  • Colin de la Higuera
  • Frédéric Piat
  • Frédéric Tantini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3845)


We use stochastic deterministic finite automata to model musical styles: a same automaton can be used to classify new melodies but also to generate them. Through grammatical inference these automata are learned and new pieces of music can be parsed. We show that this works by proposing promising classification results.


  1. 1.
    Narmour, E.: The analysis and cognition of melodic complexity: The implication-realization model. University of Chicago Press, Chicago (1992)Google Scholar
  2. 2.
    Cruz, P., Vidal, E.: Learning regular grammars to model musical style: Comparing different coding schemes. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 211–222. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Sakakibara, Y.: Recent advances of grammatical inference. Theoretical Computer Science 185, 15–45 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    de la Higuera, C.: A bibliographical study of grammatical inference. Pattern Recognition (to appear, 2005)Google Scholar
  5. 5.
    Thollard, F., Dupont, P., de la Higuera, C.: Probabilistic DFA inference using Kullback-Leibler divergence and minimality. In: Proc. 17th International Conf. on Machine Learning, pp. 975–982. Morgan Kaufmann, San Francisco (2000)Google Scholar
  6. 6.
    Kermorvant, C., de la Higuera, C.: Learning languages with help. In: Adriaans, P., Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484, pp. 161–173. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Colin de la Higuera
    • 1
  • Frédéric Piat
    • 1
  • Frédéric Tantini
    • 1
  1. 1.EURISE, Université de Saint-EtienneSaint-EtienneFrance

Personalised recommendations