On Two-Dimensional Pattern Matching by Finite Automata

  • Jan Žd’árek
  • Bořivoj Melichar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3845)


This paper presents a general concept of two-dimensional pattern matching using conventional (one-dimensional) finite automata. Then two particular models and methods, implementations of the general principle, are presented. The first of these two models presents an automata based version of the Bird and Baker approach with lower space complexity than the original algorithm. The second introduces a new model for two-dimensional approximate pattern matching using the two-dimensional Hamming distance.


Space Complexity Pattern Match Programming Simulation Edit Distance Finite Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amir, A.: Theoretical issues of searching aerial photographs: a bird’s eye view. In: Balík, M., Holub, J., Šimánek, M. (eds.) Proceedings of the Prague Stringology Conference 2004, Czech Technical University in Prague, Czech Republic, pp. 1–23 (2004)Google Scholar
  2. 2.
    Crochemore, M., Hancart, C.: Automata for matching patterns. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 399–462. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Melichar, B.: Approximate string matching by finite automata. In: Hlaváč, V., Šára, R. (eds.) CAIP 1995. LNCS, vol. 970, pp. 342–349. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  4. 4.
    Melichar, B., Holub, J.: 6D classification of pattern matching problems. In: Holub, J. (ed.) Proceedings of the Prague Stringology Club Workshop 1997, Czech Technical University in Prague, Czech Republic, pp. 24–32 (1997)Google Scholar
  5. 5.
    Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Handbook of Formal Languages, vol. III (Beyond Words), pp. 216–267. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search. Commun. ACM 18, 333–340 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ždárek, J., Melichar, B.: Finite automata and two-dimensional pattern matching. In: Heričko, M., Rozman, I., Jurič, M.B., Rajkovič, V., Urbančič, T., Bernik, M., Bučar, M., Brodnik, A. (eds.) Proceedings of the 7th International Multiconference Information Society IS 2004, Ljubljana, Slovenia, Institut “Jožef Stefan”, vol. D, pp. 185–188 (2004)Google Scholar
  8. 8.
    Cambouropoulos, E., Crochemore, M., Iliopoulos, C.S., Mouchard, L., Pinzon, Y.J.: Algorithms for computing approximate repetitions in musical sequences. In: Raman, R., Simpson, J. (eds.) Proceedings of the 10th Australasian Workshop On Combinatorial Algorithms, Perth, WA, Australia, pp. 129–144 (1999)Google Scholar
  9. 9.
    Sellers, P.H.: The theory and computation of evolutionary distances: Pattern recognition. J. Algorithms 1, 359–373 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Wu, S., Manber, U.: Fast text searching: allowing errors. Commun. ACM 35, 83–91 (1992)CrossRefGoogle Scholar
  11. 11.
    Holub, J.: Simulation of nondeterministic finite automata in pattern matching. Dissertation thesis, Czech Technical University in Prague, Czech Republic (2000)Google Scholar
  12. 12.
    Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6, 323–350 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hamming, R.W.: Error detecting and error correcting codes. The Bell System Technical Journal 29, 147–160 (1950)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages and computations. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  15. 15.
    Ukkonen, E.: Finding approximate patterns in strings. J. Algorithms 6, 132–137 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Baeza-Yates, R.A., Navarro, G.: New models and algorithms for multidimensional approximate pattern matching. J. Discret. Algorithms 1, 21–49 (2000)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jan Žd’árek
    • 1
  • Bořivoj Melichar
    • 1
  1. 1.Department of Computer Science and EngineeringFaculty of Electrical Engineering, Czech Technical University in PraguePraha 2Czech Republic

Personalised recommendations