Languages Recognizable by Quantum Finite Automata

  • Rūsiņš Freivalds
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3845)

Abstract

There are several nonequivalent definitions of quantum finite automata. Nearly all of them recognize only regular languages but not all regular languages. On the other hand, for all these definitions there is a result showing that there is a language l such that the size of the quantum automaton recognizing L is essentially smaller than the size of the minimal deterministic automaton recognizing L.

For most of the definitions of quantum finite automata the problem to describe the class of the languages recognizable by the quantum automata is still open. The partial results are surveyed in this paper. Moreover, for the most popular definition of the QFA, the class of languages recognizable by a QFA is not closed under union or any other binary Boolean operation where both arguments are significant.

The end of the paper is devoted to unpublished results of the description of the class of the recognizable languages in terms of the second order predicate logics. This research is influenced by the results of Büchi [1,2], Elgot [3], Trakhtenbrot [4] (description of regular languages in terms of MSO), R.Fagin [5,6] (description of NP in terms of ESO), von Neumann [7] (quantum logics), Barenco, Bennett et al. [8](universal quantum gates).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 6, 66–92 (1960)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Nagel, E. (ed.) Proceeding of the International Congress on Logic, Methodology and Philosophy of Science, pp. 1–11. Stanford University Press, Stanford (1960)Google Scholar
  3. 3.
    Elgot, C.C.: Decision problems of finite automata design and related arithmetics. Trans. Amer. Math. Soc. 98, 21–51 (1961)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Trakhtenbrot, B.A.: Finite automata and the logic of one-place predicates. Siberian Mathematical Journal 3, 103–131 (1962) (in Russian); English translation: American Mathematical Society Translations 59, 23–55 (1966) MathSciNetMATHGoogle Scholar
  5. 5.
    Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Karp, R.M. (ed.) Complexity of Computation. SIAM-AMS Proceedings, vol. 7, pp. 43–73 (1974)Google Scholar
  6. 6.
    Fagin, R.: Monadic generalized spectra. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 21, 89–96 (1975)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1932)Google Scholar
  8. 8.
    Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N.H., Shor, P.W., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Physical Review A 52, 3457–3467 (1995)CrossRefGoogle Scholar
  9. 9.
    Ambainis, A., Freivalds, R.: 1-way quantum finite automata: Strengths, weaknesses and generalizations. In: Proc. FOCS 1998, pp. 332–341 (1998), also quant-ph/98020622 Google Scholar
  10. 10.
    Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theor. Comput. Sci. 237, 275–306 (2000); also quant-ph/9707031 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proc. FOCS 1997, pp. 66–75 (1997)Google Scholar
  12. 12.
    Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata. SIAM J. Comput. 31, 1456–1478 (2002); also quant-ph/9903014 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Meyer, A.R., Thompson, C.: Remarks on algebraic decomposition of automata. Mathematical Systems Theory 3, 110–118 (1969)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Ambainis, A., Bonner, R.F., Freivalds, R., Kikusts, A.: Probabilities to accept languages by quantum finite automata. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 174–183. Springer, Heidelberg (1999); also quant-ph/9904066 CrossRefGoogle Scholar
  15. 15.
    Kikusts, A.: A small 1-way quantum finite automation (1998); quant-ph/9810065Google Scholar
  16. 16.
    Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and quantum finite automata. J. ACM 49, 496–511 (2002); also quant-ph/9804043MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Nayak, A.: Optimal lower bounds for quantum automata and random access codes. In: Proc. FOCS 1999, pp. 369–377 (1999); also quant-ph/9904093Google Scholar
  18. 18.
    Gruska, J.: Descriptional complexity issues in quantum computing. Journal of Automata, Languages and Combinatorics 5, 191–218 (2000)MathSciNetMATHGoogle Scholar
  19. 19.
    Ambainis, A., Kikusts, A., Valdats, M.: On the class of languages recognizable by 1-way quantum finite automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 75–86. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Valdats, M.: The class of languages recognizable by 1-way quantum finite automata is not closed under union. In: Proc. Int. Workshop Quantum Computation and Learning, Sundbyholm Slott, Sweden, pp. 52–64 (2000)Google Scholar
  21. 21.
    Immerman, N.: Descriptive and computational complexity. In: Csirik, J.A., Demetrovics, J., Gecseg, F. (eds.) FCT 1989. LNCS, vol. 380, pp. 244–245. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  22. 22.
    Immerman, N.: Descriptive complexity: A logician’s approach to computation. Notices of the AMS 42, 1127–1133 (1995)MathSciNetMATHGoogle Scholar
  23. 23.
    Pnueli, A.: The temporal logic of programs. In: Proc. FOCS 1977, pp. 1–14 (1977)Google Scholar
  24. 24.
    Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way finite-state transducers. ACM Trans. Comput. Logic 2, 216–254 (2001)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Stockmeyer, L.: The polynomial-time hierarchy. Theoretical Computer Science 3, 1–22 (1977)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Immerman, N.: Relational queries computable in polynomial time (extended abstract). In: Proc. STOC 1982, pp. 147–152. ACM Press, New York (1982)Google Scholar
  27. 27.
    Vardi, M.Y.: Complexity of relational query languages. In: Proc. STOC 1982, pp. 137–146 (1982)Google Scholar
  28. 28.
    Immerman, N.: Upper and lower bounds for first order expressibility. J. Comput. Syst. Sci. 25, 76–98 (1982)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Vincenzo, D.P.D.: Two-bit gates are universal for quantum computation. Physical Review A 51, 1015–1022 (1995)CrossRefGoogle Scholar
  31. 31.
    Dzelme, I.: Quantum finite automata and logics. Master’s thesis, University of Latvia, Advisor: Freivalds, R (2005)Google Scholar
  32. 32.
    Mostowski, A.: On a generalization of quantifiers. Fundamenta Mathematicae 44, 12–36 (1957)MathSciNetMATHGoogle Scholar
  33. 33.
    Burtschik, H.J., Vollmer, H.: Lindström quantifiers and leaf language definability. In: Electronic Colloquium on Computational Complexity, TR96–005 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rūsiņš Freivalds
    • 1
  1. 1.Institute of Mathematics and Computer ScienceUniversity of LatviaRīgaLatvia

Personalised recommendations