Computing the Tutte Polynomial on Graphs of Bounded Clique-Width

  • Omer Giménez
  • Petr Hliněný
  • Marc Noy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3787)


The Tutte polynomial is a notoriously hard graph invariant, and efficient algorithms for it are known only for a few special graph classes, like for those of bounded tree-width. The notion of clique-width extends the definition of cograhs (graphs without induced P 4), and it is a more general notion than that of tree-width. We show a subexponential algorithm (running in time expO(n 2/3)) for computing the Tutte polynomial on cographs. The algorithm can be extended to a subexponential algorithm computing the Tutte polynomial on on all graphs of bounded clique-width. In fact, our algorithm computes the more general U-polynomial.

2000 Math Subjects Classification: 05C85, 68R10.


Tutte polynomial cographs clique-width subexponential algorithm U polynomial 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, G.E.: The theory of partitions. Cambridge U. Press, Cambridge (1984)zbMATHCrossRefGoogle Scholar
  2. 2.
    Andrzejak, A.: An Algorithm for the Tutte Polynomials of Graphs of Bounded Treewidth. Discrete Math. 190, 39–54 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Courcelle, B., Makowsky, J.A., Rotics, U.: Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width. Theory Comput. Systems 33, 125–150 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101, 77–114 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Giménez, O., Noy, M.: On the complexity of computing the Tutte polynomial of bicircular matroids. Combin. Probab. Computing (to appear)Google Scholar
  6. 6.
    Giménez, O., Hliněný, P., Noy, M.: Computing the Tutte Polynomial on graphs of Bounded Clique-Width (2005) (manuscript)Google Scholar
  7. 7.
    Hliněný, P.: The Tutte Polynomial for Matroids of Bounded Branch-Width, Combin. Probab. Computing (2005) (to appear)Google Scholar
  8. 8.
    Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the Computational Complexity of the Jones and Tutte Polynomials. Math. Proc. Camb. Phil. Soc. 108, 35–53 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed clique-width. Discrete Applied Math. 126, 197–221 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    van Lint, J.H., Wilson, R.M.: A Course in Combinatorics. Cambridge University Press, Cambridge (1992)zbMATHGoogle Scholar
  11. 11.
    Noble, S.D.: Evaluating the Tutte Polynomial for Graphs of Bounded Tree-Width. Combin. Probab. Computing 7, 307–321 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Noble, S.D., Welsh, D.J.A.: A weighted graph polynomial from chromatic invariants of knots. Ann. Inst. Fourier (Grenoble) 49, 1057–1087 (1999)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Oum, S.-I., Seymour, P.D.: Approximating Clique-width and Branch-width (2004) (submitted)Google Scholar
  14. 14.
    Oum, S.-I.: Approximating Rank-width and Clique-width Quickly. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 49–58. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Omer Giménez
    • 1
  • Petr Hliněný
    • 2
  • Marc Noy
    • 1
  1. 1.Department of Applied MathematicsTechnical University of CataloniaBarcelonaSpain
  2. 2.Department of Computer Science, FEITechnical University of OstravaOstravaCzech Republic

Personalised recommendations