Faster Dynamic Algorithms for Chordal Graphs, and an Application to Phylogeny

  • Anne Berry
  • Alain Sigayret
  • Jeremy Spinrad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3787)


We improve the current complexities for maintaining a chordal graph by starting with an empty graph and repeatedly adding or deleting edges.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for Industrial and Applied Mathematics, Philadelphia, USA (1999)Google Scholar
  2. 2.
    Berry, A., Sigayret, A., Sinoquet, C.: Maximal Sub-Triangulation as Improving Phylogenetic Data. In: Govaert, G., Haenle, R., Nadif, M. (eds.) Proceedings of JIM 2003. Soft Computing – Recent Advances in Knowledge Discovery, vol. 1900(01) (2005)Google Scholar
  3. 3.
    Buneman, P.: A characterization of rigid circuit graphs. Discrete Mathematics 9, 205–212 (1974)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Coppersmith, D., Winograd, S.: On the Asymptotic Complexity of Matrix Multiplication. SIAM J. Comput. 11(3), 472–492 (1982)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gàvril, F.: The intersection graphs of subtrees of trees are exactly the chordal graphs. Journal of Combinatorial Theory B 16, 47–56 (1974)MATHCrossRefGoogle Scholar
  6. 6.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)MATHGoogle Scholar
  7. 7.
    Huson, D., Nettles, S., Warnow, T.: Obtaining highly accurate topology estimates of evolutionary trees from very short sequences. In: Proc. RECOMB 1999, Lyon, France, pp. 198–207 (1999)Google Scholar
  8. 8.
    Ibarra, L.: Fully Dynamic Algorithms for Chordal and Split Graphs. In: Proc. 10th Annual ACM-SIAM Synposium on Discrete Algorithms SODA 1999, pp. 923–924 (1999)Google Scholar
  9. 9.
    Kearney, P., Hayward, R., Meijer, H.: Inferring evolutionary trees from ordinal data. In: Proc. 8th Annual ACM-SIAM Symposium on Discrete Algorithms SODA 1997, pp. 418–426 (1997)Google Scholar
  10. 10.
    Spinrad, J.P.: Efficient Graph Representation. Fields Institute Monographs 19, 324p. American Mathematics Society, Providence (2003)Google Scholar
  11. 11.
    Spinrad, J., Sritharan, R.: Algorithms for Weakly Triangulated Graphs. Discrete Applied Mathematics 59, 181–191 (1995)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Walter, J.R.: Representations of Rigid Circuit Graphs. PhD. Dissertation, Wayne State University, Detroit, USA (1972)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Anne Berry
    • 1
  • Alain Sigayret
    • 1
  • Jeremy Spinrad
    • 2
  1. 1.LIMOS UMR, bat. ISIMAAubièreFrance
  2. 2.EECS deptVanderbilt UniversityNashvilleUSA

Personalised recommendations