Extending the Tractability Border for Closest Leaf Powers

  • Michael Dom
  • Jiong Guo
  • Falk Hüffner
  • Rolf Niedermeier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3787)


The NP-complete Closest 4-Leaf Power problem asks, given an undirected graph, whether it can be modified by at most ℓ edge insertions or deletions such that it becomes a 4-leaf power. Herein, a 4-leaf power is a graph that can be constructed by considering an unrooted tree—the 4-leaf root—with leaves one-to-one labeled by the graph vertices, where we connect two graph vertices by an edge iff their corresponding leaves are at distance at most 4 in the tree. Complementing and “completing” previous work on Closest 2-Leaf Power and Closest 3-Leaf Power, we show that Closest 4-Leaf Power is fixed-parameter tractable with respect to parameter ℓ.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. In: Proc. 44th FOCS, pp. 524–533. IEEE Computer Society, Los Alamitos (2003); To appear in J. Comput. System Sci.Google Scholar
  2. 2.
    Chen, Z.-Z., Jiang, T., Lin, G.: Computing phylogenetic roots with bounded degrees and errors. SIAM J. Comput. 32(4), 864–879 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dom, M., Guo, J., Hüffner, F., Niedermeier, R.: Error compensation in leaf root problems. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 389–401. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Erdős, P., Pósa, L.: On the maximal number of disjoint circuits of a graph. Publ. Math. Debrecen 9, 3–12 (1962)MathSciNetGoogle Scholar
  5. 5.
    Jiang, T., Lin, G., Xu, J.: On the closest tree kth root problem. Manuscript, Department of Computer Science, University of Waterloo (2000)Google Scholar
  6. 6.
    Kearney, P.E., Corneil, D.G.: Tree powers. J. Algorithms 29(1), 111–131 (1998)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Křivánek, M., Morávek, J.: NP-hard problems in hierarchical-tree clustering. Acta Inform. 23(3), 311–323 (1986)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lin, G., Kearney, P.E., Jiang, T.: Phylogenetic k-root and Steiner k-root. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 539–551. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Lin, Y.-L., Skiena, S.S.: Algorithms for square roots of graphs. SIAM J. Discrete Math. 8(1), 99–118 (1995)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Motwani, R., Sudan, M.: Computing roots of graphs is hard. Discrete Appl. Math. 54(1), 81–88 (1994)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Natanzon, A.: Complexity and approximation of some graph modification problems. Master’s thesis, Department of Computer Science, Tel Aviv University (1999)Google Scholar
  12. 12.
    Nishimura, N., Ragde, P., Thilikos, D.M.: On graph powers for leaf-labeled trees. J. Algorithms 42(1), 69–108 (2002)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Rautenbach, D.: 4-leafroots. Manuscript, Forschungsinstitut für Diskrete Mathematik, Universität Bonn (June 2004)Google Scholar
  14. 14.
    Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144, 173–182 (2004)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michael Dom
    • 1
  • Jiong Guo
    • 1
  • Falk Hüffner
    • 1
  • Rolf Niedermeier
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations