Computing Branchwidth Via Efficient Triangulations and Blocks

  • Fedor Fomin
  • Frédéric Mazoit
  • Ioan Todinca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3787)

Abstract

Minimal triangulations and potential maximal cliques are the main ingredients for a number of polynomial time algorithms on different graph classes computing the treewidth of a graph. Potential maximal cliques are also the main engine of the fastest so far \(\mathcal{O}\)(1.9601 n )-time exact treewidth algorithm. Based on the recent results of Mazoit, we define the structures that can be regarded as minimal triangulations and potential maximal cliques for branchwidth: efficient triangulations and blocks. We show how blocks can be used to construct an algorithm computing the branchwidth of a graph on n vertices in time (2 + \(\sqrt{\rm 3}\))\(^{\it n}\) · n O(1).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beigel, R., Eppstein, D.: 3-coloring in time O(1.3446n): a no-MIS algorithm. In: Proceedings of the 36th IEEE Symposium on Foundations of Computer Science (FOCS 1995), pp. 444–452 (1995)Google Scholar
  2. 2.
    Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). Journal of Algorithms 54, 444–453 (2005)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209, 1–45 (1998)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bodlaender, H.L., Kloks, T., Kratsch, D.: Treewidth and pathwidth of permutation graphs. SIAM J. on Discrete Math. 8, 606–616 (1995)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: grouping the minimal separators. SIAM J. on Computing 31(1), 212–232 (2001)MATHCrossRefGoogle Scholar
  6. 6.
    Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Operations Research Letters 32, 547–556 (2004)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cormen, T., Leiserson, C., Rivest, R.: Introduction to algorithms. The MIT press, Cambridge (1990)MATHGoogle Scholar
  8. 8.
    Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C., Raghavan, P., Schöning, U.: A deterministic (2 − 2/(k + 1))n algorithm for k-SAT based on local search. Theoretical Computer Science 289(1), 69–83 (2002)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Eppstein, D.: Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfaction. In: Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms SODA 2001, pp. 329–337 (2001)Google Scholar
  10. 10.
    Fomin, F., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for treewidth and minimum fill-in. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Gavril, F.: The intersection graphs of a path in a tree are exactly the chordal graphs. Journal of Combinatorial Theory 16, 47–56 (1974)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)MATHGoogle Scholar
  13. 13.
    Iwama, K., Tamaki, S.: Improved upper bounds for 3-SAT. In: Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms SODA 2004, p. 328 (2004)Google Scholar
  14. 14.
    Jian, T.: An O(20.304n) algorithm for solving maximum independent set problem. IEEE Transactions on Computers 35(9), 847–851 (1986)MATHCrossRefGoogle Scholar
  15. 15.
    Kloks, T., Kratochvíl, J., Müller, H.: New branchwidth territories. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 173–183. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Mazoit, F.: Décompositions algorithmiques des graphes. PhD thesis, École normale supérieure de Lyon (2004) (In French)Google Scholar
  17. 17.
    Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph embeddings. Discrete Appl. Math. 79(1-3), 171–188 (1997)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Paturi, R., Pudlak, P., Saks, M.E., Zane, F.: An improved exponential-time algorithm for k-SAT. In: Proceedings of the 39th IEEE Symposium on Foundations of Computer Science FOCS 1998, pp. 628–637 (1998)Google Scholar
  19. 19.
    Robertson, N., Seymour, P.: Graph minors X. Obstructions to tree decompositions. Journal of Combinatorial Theory Series B 52, 153–190 (1991)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Robson, J.M.: Algorithms for maximum independent sets. Journal of Algorithms 7(3), 425–440 (1986)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Schoning, U.: A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems. In: Proceedings of the 40th IEEE Symposium on Foundations of Computer Science FOCS 1999, pp. 410–414 (1999)Google Scholar
  22. 22.
    Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14, 217–241 (1994)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Tarjan, R., Trojanowski, A.: Finding a maximum independent set. SIAM Journal on Computing 6(3), 537–546 (1977)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Williams, R.: A new algorithm for optimal constraint satisfaction and its implications. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1227–1237. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Fedor Fomin
    • 1
  • Frédéric Mazoit
    • 2
  • Ioan Todinca
    • 3
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.LIFUniversité de provenceMarseilleFrance
  3. 3.LIFOUniversité d’OrléansOrléansFrance

Personalised recommendations