Advertisement

Combinatorial Search on Graphs Motivated by Bioinformatics Applications: A Brief Survey

  • Mathilde Bouvel
  • Vladimir Grebinski
  • Gregory Kucherov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3787)

Abstract

The goal of this paper is to present a brief survey of a collection of methods and results from the area of combinatorial search [1,8] focusing on graph reconstruction using queries of different type. The study is motivated by applications to genome sequencing.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aigner, M.: Combinatorial Search. John Wiley and Sons, Chichester (1988)MATHGoogle Scholar
  2. 2.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell. Garland Science (1994)Google Scholar
  3. 3.
    Alon, N.: Separating matrices. Private communication (May 1997)Google Scholar
  4. 4.
    Alon, N., Asodi, V.: Learning a hidden subgraph. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 110–121. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Alon, N., Beigel, R., Kasif, S., Rudich, S., Sudakov, B.: Learning a hidden matching. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2002, Vancouver, BC, Canada, 16–19 November, pp. 197–206. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  6. 6.
    Cantor, D.G., Mills, W.H.: Determination of a subset from certain combinatorial properties. Can. J. Math. 18, 42–48 (1966)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Cicalese, F., Damaschke, P., Vaccaro, U.: Optimal group testing algorithms with interval queries and their application to splice site detection. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 1029–1037. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Du, D., Hwang, F.: Combinatorial group testing and its applications. Series on applied Mathematics, vol. 3 (1993)Google Scholar
  9. 9.
    Erdös, P., Rényi, A.: Asymmetric graphs. Acta Math. Acad. Sci. Hung. Acad. Sci. 14, 295–315 (1963)MATHCrossRefGoogle Scholar
  10. 10.
    Grebinski, V.: On the power of additive combinatorial search model. In: Hsu, W.-L., Kao, M.-Y. (eds.) COCOON 1998. LNCS, vol. 1449, pp. 194–203. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Grebinski, V., Kucherov, G.: Reconstructing a hamiltonian cycle by querying the graph: Application to DNA physical mapping. Discrete Applied Mathematics 88, 147–165 (1998)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Grebinski, V., Kucherov, G.: Reconstructing set partitions. In: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1999, Baltimore, Maryland, January 17-19, pp. 915–916. ACM, SIAM, New York (1999)Google Scholar
  13. 13.
    Grebinski, V., Kucherov, G.: Optimal reconstruction of graphs under the additive model. Algorithmica 28, 104–124 (2000)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Klau, G.W., Rahmann, S., Schliep, A., Vingron, M., Reinert, K.: Optimal robust non-unique probe selection using integer linear programming. Bioinformatics 20 (suppl. 1), i186–i193 (2004)CrossRefGoogle Scholar
  15. 15.
    Knill, E., Muthukrishnan, S.: Group testing problems in experimental molecular biology. Technical Report LAUR-95-1503, Los Alamos National Laboratory (March 1995)Google Scholar
  16. 16.
    Li, M., Vitányi, P.M.B.: Kolmogorov complexity arguments in combinatorics. J. Comb. Theory Series A 66(2), 226–236 (1994)MATHCrossRefGoogle Scholar
  17. 17.
    Lindström, B.: On a combinatorial problem in number theory. Canad. Math. Bull. 8, 477–490 (1965)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Lindström, B.: Determination of two vectors from the sum. J. Comb. Theory 6, 402–407 (1969)CrossRefGoogle Scholar
  19. 19.
    Lindström, B.: On Möbius functions and a problem in combinatorial number theory. Canad. Math. Bull. 14(4), 513–516 (1971)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Lindström, B.: On b 2 sequences of vectors. Journal of Number Theory 4, 261–265 (1972)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lindström, B.: Determining subsets by unramified experiments. In: Srivastava, J.N. (ed.) A Survey of Statistical Designs and Linear Models, pp. 407–418. North Holland, Amsterdam (1975)Google Scholar
  22. 22.
    Wilson, R.M.: Decomposition of complete graphs into subgraphs isomorphic to a given graph. In: Congressus Numerantium XV, pp. 647–659 (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mathilde Bouvel
    • 1
  • Vladimir Grebinski
    • 2
  • Gregory Kucherov
    • 3
  1. 1.Département d’InformatiqueEcole Normale Supérieure de CachanFrance
  2. 2.CompuGene Inc.JamesburgUSA
  3. 3.INRIA/LORIAVillers-lès-NancyFrance

Personalised recommendations